当前位置: X-MOL 学术Int. J. Therm. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The convective heat transfer characteristics of the track surface on which wheels roll over periodically
International Journal of Thermal Sciences ( IF 4.9 ) Pub Date : 2021-03-24 , DOI: 10.1016/j.ijthermalsci.2021.106947
Le-Li Wang , Lu Wang , Zheng-Xia Gao , Liang-Bi Wang , Ye Wang

The convective heat transfer coefficient on the rail surface is an important parameter to determine the temperature field of the wheel/rail contact region, especially at the condition that train operates normally and the condition that an eddy current brake is used. Because of the complex configuration of a real wheel/rail contact system, it is hard to build a model with similar geometry as the real one. In this paper, a simple experimental model is used to obtain the convective heat transfer coefficient on a circular track surface on which the wheels pass periodically. In the experimental processes uniform heat flux is applied on the track surface, and the six types of the wheels are used. The results show that when the heat transfer coefficient is presented regarding to the wheel center velocity or angular velocity, it is dependent on the wheel diameter. For the same wheel diameter, the heat transfer coefficient has a parabolic distribution characteristics regarding to the wheel center velocity, which means the heat transfer coefficient increases firstly and then decreases as the wheel center velocity increases. The maximum value of the heat transfer coefficient is independent of the wheel diameter. It is hard to find a correlation between Nusselt number and Reynolds number for the wheels with different diameters. The significant characteristic is that the frequency of the wheels pass takes a major role on the heat transfer coefficient. Therefore, the heat transfer coefficient can be correlated with the frequency of the wheels that run over the circular track.



中文翻译:

车轮周期性滚动的履带表面的对流传热特性

轨道表面上的对流传热系数是确定车轮/轨道接触区域温度场的重要参数,尤其是在火车正常运行的条件和使用涡流制动器的条件下。由于实际的车轮/轨道接触系统的配置复杂,因此很难建立具有与真实模型相似的几何形状的模型。在本文中,使用一个简单的实验模型来获得车轮周期性通过的圆形轨道表面上的对流传热系数。在实验过程中,均匀的热通量施加在履带表面上,并使用六种类型的车轮。结果表明,当传热系数与车轮中心速度或角速度有关时,它取决于车轮直径。对于相同的车轮直径,传热系数具有与车轮中心速度有关的抛物线分布特性,这意味着传热系数先增大,然后随着车轮中心速度的增加而减小。传热系数的最大值与车轮直径无关。对于直径不同的车轮,很难找到Nusselt数和Reynolds数之间的相关性。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。传热系数具有关于车轮中心速度的抛物线分布特性,这意味着传热系数先增大,然后随着车轮中心速度的增加而减小。传热系数的最大值与车轮直径无关。对于直径不同的车轮,很难找到Nusselt数和Reynolds数之间的相关性。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。传热系数具有关于车轮中心速度的抛物线分布特性,这意味着传热系数先增大,然后随着车轮中心速度的增加而减小。传热系数的最大值与车轮直径无关。对于直径不同的车轮,很难找到Nusselt数和Reynolds数之间的相关性。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。这意味着传热系数先增大,然后随着轮心速度的增加而减小。传热系数的最大值与车轮直径无关。对于直径不同的车轮,很难找到Nusselt数和Reynolds数之间的相关性。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。这意味着传热系数先增大,然后随着轮心速度的增加而减小。传热系数的最大值与车轮直径无关。对于直径不同的车轮,很难找到Nusselt数与Reynolds数之间的相关性。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。显着的特征是,车轮通过的频率在传热系数中起主要作用。因此,传热系数可以与在圆形轨道上运行的车轮的频率相关。

更新日期:2021-03-24
down
wechat
bug