当前位置: X-MOL 学术Adv. Phys. X › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical manipulation of nanoscale materials by linear and nonlinear resonant optical responses
Advances in Physics: X ( IF 7.7 ) Pub Date : 2021-03-22 , DOI: 10.1080/23746149.2021.1885991
Hajime Ishihara 1, 2, 3
Affiliation  

ABSTRACT

Realization of technologies for the mechanical manipulation (trapping, transportation, positioning, and aligning) of individual nanoscale particles has been an aspiration of researchers in various fields. Such technologies would enable us to manipulate nanomaterials, such as molecules, quantum dots, and nanocarbons, in a direct and selective way according to their individual quantum properties. Laser cooling and laser tweezers have been established as methods of remote manipulation of small objects for the atomic and micro-sized regimes, respectively. Despite the great successes of these technologies, the optical manipulation of nanoscale materials is still challenging because the thermal disturbance from the environment must be overcome by the very weak force on nanoscale objects. Technologies for selectively manipulating individual nanomaterial would enable the creation of structural order through optical sorting and isolation of targets according to their quantum individualities, and enable manipulation of chemical processes by selective control of molecular diffusion and condensation. In this article, we review recent studies on optical force on nanomaterials, mainly focusing on that arising from the linear and nonlinear optical responses due to electronic resonance of nanoparticles, and discuss the possibility of establishing nanoscale optical manipulation that could potentially contribute to the science and technology supporting our daily lives.



中文翻译:

通过线性和非线性共振光学响应对纳米级材料进行光学处理

摘要

实现单个纳米级颗粒的机械操作(捕获,运输,定位和排列)的技术已成为各个领域研究人员的追求。这样的技术将使我们能够根据其各自的量子特性,以直接和选择性的方式来操纵纳米材料,例如分子,量子点和纳米碳。激光冷却和激光镊子已被确立为分别用于原子和微米尺寸状态的小物体远程操纵的方法。尽管这些技术取得了巨大的成功,但是纳米级材料的光学操作仍具有挑战性,因为必须通过对纳米级物体施加的非常弱的力来克服来自环境的热干扰。用于选择性操纵单个纳米材料的技术将能够通过光学分选和根据目标的量子独特性分离靶来创建结构顺序,并能够通过选择性控制分子扩散和缩合来操纵化学过程。在本文中,我们回顾了有关纳米材料上的光学力的最新研究,主要侧重于由于纳米粒子的电子共振而产生的线性和非线性光学响应,并讨论了建立纳米级光学操纵的可能性,该操纵可能对科学和支持我们日常生活的技术。并通过选择性控制分子扩散和缩合来控制化学过程。在本文中,我们回顾了有关纳米材料上的光学力的最新研究,主要侧重于由于纳米粒子的电子共振而产生的线性和非线性光学响应,并讨论了建立纳米级光学操纵的可能性,该操纵可能对科学和支持我们日常生活的技术。并通过选择性控制分子扩散和缩合来控制化学过程。在本文中,我们回顾了有关纳米材料上的光学力的最新研究,主要侧重于由于纳米粒子的电子共振而产生的线性和非线性光学响应,并讨论了建立纳米级光学操纵的可能性,该操纵可能对科学和支持我们日常生活的技术。

更新日期:2021-03-23
down
wechat
bug