当前位置: X-MOL 学术Int. J. Precis. Eng. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
In-Situ Distortion Prediction in Metal Additive Manufacturing Considering Boundary Conditions
International Journal of Precision Engineering and Manufacturing ( IF 2.6 ) Pub Date : 2021-03-22 , DOI: 10.1007/s12541-021-00496-z
Wenjia Wang , Jinqiang Ning , Steven Y. Liang

Undesired distortion often occurs in metal additive manufacturing due to the high temperature gradient resulting from repeated thermal cycles. A good understanding and fast predictions of in-situ distortion are essential to achieve high dimensional accuracy and prevent delamination or failure of build parts. Experimental investigations and numerical methods have been employed to study the in-situ distortion. However, the complex measurement systems and high computational cost limit their applications. An analytical modeling method with closed-form solutions is proposed in this paper to predict the in-situ distortion of laser cladding process without using iteration-based numerical calculations. The effects of build edges and geometry are considered, which include thermal convection and radiation at boundaries. Heat input and heat sink solutions modified from the point moving heat source model are added together to predict the temperature profile of the build and substrate. The die-substrate assembly model is used to calculate the deflection during the manufacturing process. Alloy 625 is selected to test the predictive accuracy and computational efficiency of the presented analytical model. The predicted results are close to the experimental data of in-situ distortion in literature. The computational time is less than 30 s. The good predictive accuracy and low computational cost make the presented method a promising approach to study the full-field temperature and distortion of a geometrically complex part.



中文翻译:

考虑边界条件的金属增材制造中的原位变形预测

由于重复的热循环导致的高温梯度,在金属增材制造中经常会发生不希望的变形。对原位变形的良好理解和快速预测对于实现高尺寸精度并防止构建部件分层或失效至关重要。实验研究和数值方法已被用于研究原位畸变。但是,复杂的测量系统和较高的计算成本限制了它们的应用。提出了一种采用闭式解的解析建模方法,无需进行基于迭代的数值计算即可预测激光熔覆过程的原位畸变。考虑构建边缘和几何形状的影响,包括边界处的热对流和辐射。从点移动热源模型修改而来的热量输入和散热器解决方案被加在一起,以预测构件和基板的温度曲线。管芯-基板装配模型用于计算制造过程中的挠度。选择合金625以测试所提供分析模型的预测准确性和计算效率。预测结果接近文献中原位畸变的实验数据。计算时间少于30 s。良好的预测精度和较低的计算成本使所提出的方法成为研究几何复杂零件的全场温度和变形的有前途的方法。管芯-基板装配模型用于计算制造过程中的挠度。选择合金625以测试所提供分析模型的预测准确性和计算效率。预测结果接近文献中原位畸变的实验数据。计算时间少于30 s。良好的预测精度和较低的计算成本使所提出的方法成为研究几何复杂零件的全场温度和变形的有前途的方法。管芯-基板装配模型用于计算制造过程中的挠度。选择合金625以测试所提供分析模型的预测准确性和计算效率。预测结果接近文献中原位畸变的实验数据。计算时间少于30 s。良好的预测精度和较低的计算成本使所提出的方法成为研究几何复杂零件的全场温度和变形的有前途的方法。计算时间少于30 s。良好的预测精度和较低的计算成本使所提出的方法成为研究几何复杂零件的全场温度和变形的有前途的方法。计算时间少于30 s。良好的预测精度和较低的计算成本使所提出的方法成为研究几何复杂零件的全场温度和变形的有前途的方法。

更新日期:2021-03-22
down
wechat
bug