当前位置: X-MOL 学术J. Phys. Condens. Matter › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The nuts and bolts of core-hole constrained Ab-Initio Simulation for K-shell X-ray photoemission and adsorption spectra
Journal of Physics: Condensed Matter ( IF 2.7 ) Pub Date : 2021-01-22 , DOI: 10.1088/1361-648x/abdf00
Benedikt P Klein 1, 2 , Samuel J Hall 1, 3 , Reinhard J Maurer 1
Affiliation  

X-ray photoemission (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy play an important role in investigating the structure and electronic structure of materials and surfaces. Ab-initio simulations provide crucial support for the interpretation of complex spectra containing overlapping signatures. Approximate core-hole simulation methods based on Density Functional Theory such as the Delta-Self-Consistent-Field (DeltaSCF) method or the transition potential (TP) method are widely used to predict K-shell XPS and NEXAFS signatures of organic molecules, inorganic materials and metal-organic interfaces at reliable accuracy and affordable computational cost. We present the numerical and technical details of our variants of the DeltaSCF and transition potential method (coined DeltaIP-TP) to simulate XPS and NEXAFS transitions. Using exemplary molecules in gas-phase, in bulk crystals, and at metal-organic interfaces, we systematically assess how practical simulation choices affect the stability and accuracy of simulations. These include the choice of exchange-correlation functional, basis set, the method of core-hole localization, and the use of periodic boundary conditions. We particularly focus on the choice of aperiodic or periodic description of systems and how spurious charge effects in periodic calculations affect the simulation outcomes. For the benefit of practitioners in the field, we discuss sensible default choices, limitations of the methods, and future prospects.

中文翻译:

K 壳层 X 射线光发射和吸附光谱的核心孔约束 Ab-Initio 模拟的基本要素

X 射线光电子 (XPS) 和近边缘 X 射线吸收精细结构 (NEXAFS) 光谱在研究材料和表面的结构和电子结构方面发挥着重要作用。从头算模拟为解释包含重叠特征的复杂光谱提供了重要支持。基于密度泛函理论的近似核-孔模拟方法,如 Delta-Self-Consistent-Field (DeltaSCF) 方法或跃迁电位 (TP) 方法,广泛用于预测有机分子、无机分子的 K-shell XPS 和 NEXAFS 特征材料和金属有机界面具有可靠的精度和可承受的计算成本。我们展示了我们的 DeltaSCF 变体和跃迁势方法(创造的 DeltaIP-TP)的数值和技术细节,以模拟 XPS 和 NEXAFS 跃迁。我们使用气相、块状晶体和金属-有机界面中的示例性分子,系统地评估实际模拟选择如何影响模拟的稳定性和准确性。这些包括交换相关函数的选择、基组、核心孔定位方法以及周期性边界条件的使用。我们特别关注系统的非周期性或周期性描述的选择,以及周期性计算中的杂散电荷效应如何影响模拟结果。为了该领域从业者的利益,我们讨论了合理的默认选择、方法的局限性和未来前景。这些包括交换相关函数的选择、基组、核心孔定位方法以及周期性边界条件的使用。我们特别关注系统的非周期性或周期性描述的选择,以及周期性计算中的杂散电荷效应如何影响模拟结果。为了该领域从业者的利益,我们讨论了合理的默认选择、方法的局限性和未来前景。这些包括交换相关函数的选择、基组、核心孔定位方法以及周期性边界条件的使用。我们特别关注系统的非周期性或周期性描述的选择,以及周期性计算中的杂散电荷效应如何影响模拟结果。为了该领域从业者的利益,我们讨论了合理的默认选择、方法的局限性和未来前景。
更新日期:2021-01-22
down
wechat
bug