当前位置: X-MOL 学术Int. J. Numer. Methods Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Radiation heat transfer within a solar system considering nanofluid flow inside the absorber tube
International Journal of Numerical Methods for Heat & Fluid Flow ( IF 4.2 ) Pub Date : 2021-03-18 , DOI: 10.1108/hff-07-2020-0453
Zahra Ebrahimpour , Mohsen Sheikholeslami , Seyyed Ali Farshad , Ahmad Shafee

Purpose

This paper aims to model solar unit equipped with mirrors with numerical simulation. To augment the efficiency of system, absorber pipe was equipped with fins and nanomaterial was used as carrier fluid. Existence of secondary reflector results in better optical efficiency.

Design/methodology/approach

Finite volume approach is used for modeling which is done in two steps. The first one is done to achieve the heat flux distribution and second step to model turbulent flow inside the pipe. Verification has been presented for calculation of important functions (f and Nu). Outputs reveal the impacts of fin height (HF), number of fin (NF), inlet temperature (Tin) and velocity on irreversibility, thermal treatment.

Findings

Surface temperature decreases by 0.498, 0.07 and 0.017% with intensify of Re, HF and NF, respectively, when other factors were minimum. With augment of Tin, wall temperature increases about 9.87%. Given NF = 8, HF = 3 mmm, growth of Re makes Darcy factor to decrease about 28.28%, but it augments the Nu by 2.63%. Nu augments with rise of NF and HF about 2.63 and 7.66%. Irreversibility reduces about 29.5 and 11.65% with augment of NF and HF, respectively.

Originality/value

Numerical simulations for solar unit equipped with mirrors were reported in this modeling. To augment the efficiency of system, absorber pipe was equipped with fins and nanomaterial was used as carrier fluid. Existence of secondary reflector results in better optical efficiency. Finite volume approach is used for modeling which is done in two steps. The first one is done to achieve the heat flux distribution and second step to model turbulent flow inside the pipe. Verification has been presented for calculation of important functions (f and Nu). Outputs reveal the impacts of fin height (HF), number of fin (NF), inlet temperature (Tin) and velocity on irreversibility, thermal treatment.



中文翻译:

考虑吸收管内纳米流体流动的太阳系内辐射传热

目的

本文旨在通过数值模拟对配备反射镜的太阳能单元进行建模。为了提高系统的效率,吸收管配备有翅片,纳米材料用作载液。二级反射器的存在导致更好的光学效率。

设计/方法/方法

有限体积方法用于建模,分两步完成。第一步是实现热通量分布,第二步是模拟管道内的湍流。已针对重要函数(f 和 Nu)的计算进行了验证。输出显示翅片高度 (HF)、翅片数量 (NF)、入口温度 (T in ) 和速度对不可逆性和热处理的影响。

发现

当其他因素最小时,表面温度随着 Re、HF 和 NF 的增强分别降低 0.498、0.07 和 0.017%。随着 T in 的增加,壁温增加约 9.87%。给定 NF = 8, HF = 3 mmm,Re 的增长使 Darcy 因子减少约 28.28%,但它使 Nu 增加了 2.63%。Nu 随 NF 和 HF 的增加而增加约 2.63% 和 7.66%。随着 NF 和 HF 的增加,不可逆性分别降低了约 29.5% 和 11.65%。

原创性/价值

在此建模中报告了配备反射镜的太阳能装置的数值模拟。为了提高系统的效率,吸收管配备有翅片,纳米材料用作载液。二级反射器的存在导致更好的光学效率。有限体积方法用于建模,分两步完成。第一步是实现热通量分布,第二步是模拟管道内的湍流。已针对重要函数(f 和 Nu)的计算进行了验证。输出显示翅片高度 (HF)、翅片数量 (NF)、入口温度 (T in ) 和速度对不可逆性和热处理的影响。

更新日期:2021-03-18
down
wechat
bug