当前位置: X-MOL 学术Arch. Appl. Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical characterization of residual stresses in a four-point-bending experiment of textured duplex stainless steel
Archive of Applied Mechanics ( IF 2.2 ) Pub Date : 2021-03-19 , DOI: 10.1007/s00419-021-01931-3
S. F. Maassen , H. Erdle , S. Pulvermacher , D. Brands , T. Böhlke , J. Gibmeier , J. Schröder

The resulting shapes in production processes of metal components are strongly influenced by deformation induced residual stresses. Dual-phase steels are commonly used for industrial application of, e.g., forged or deep-drawn structural parts. This is due to their ability to handle high plastic deformations, while retaining desired stiffness for the products. In order to influence the resulting shape as well as component characteristics positively it is important to predict the distribution of phase-specific residual stresses which occur on the microscale of the material. In this contribution a comparative study is presented, where two approaches for the numerical simulation of residual stresses are applied. On the one hand a numerically efficient mean field theory is used to estimate on the grain level the total strain, the plastic strains and the eigenstrains based on macroscopic stress, strain and stiffness data. An alternative ansatz relies on a Taylor approximation for the grain level strains. Both approaches are applied to the corrosion-resistant duplex steel X2CrNiMoN22-5-3 (1.4462), which consists of a ferritic and an austenitic phase with the same volume fraction. Mean field and Taylor approximation strategies are implemented for usage in three dimensional solid finite element analysis and a geometrically exact Euler–Bernoulli beam for the simulation of a four-point-bending test. The predicted residual stresses are compared to experimental data from bending experiments for the phase-specific residual stresses/strains which have been determined by neutron diffraction over the bending height of the specimen.



中文翻译:

织构双相不锈钢四点弯曲实验中残余应力的数值表征

金属零件生产过程中产生的形状会受到变形引起的残余应力的强烈影响。双相钢通常用于锻造或深冲结构件的工业应用。这是由于它们具有承受高塑性变形的能力,同时又保持了产品所需的刚度。为了积极地影响最终的形状和部件特性,重要的是预测在材料的微观尺度上出现的特定于相的残余应力的分布。在这项贡献中,提出了一项比较研究,其中应用了两种方法进行残余应力的数值模拟。一方面,使用一种数值有效的平均场理论来估算晶粒水平上的总应变,基于宏观应力,应变和刚度数据的塑性应变和本征应变。另一种选择是ansatz依赖于泰勒近似的晶粒度应变。两种方法都适用于耐腐蚀双相钢X2CrNiMoN22-5-3(1.4462),它由相同体积分数的铁素体和奥氏体相组成。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。应变和刚度数据。另一种选择是ansatz依赖于泰勒近似的晶粒度应变。两种方法都适用于耐腐蚀双相钢X2CrNiMoN22-5-3(1.4462),它由相同体积分数的铁素体和奥氏体相组成。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。应变和刚度数据。另一种选择是ansatz依赖于泰勒近似的晶粒度应变。两种方法都适用于耐腐蚀双相钢X2CrNiMoN22-5-3(1.4462),它由相同体积分数的铁素体和奥氏体相组成。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。两种方法都适用于耐腐蚀双相钢X2CrNiMoN22-5-3(1.4462),它由相同体积分数的铁素体和奥氏体相组成。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。两种方法都适用于耐腐蚀双相钢X2CrNiMoN22-5-3(1.4462),它由相同体积分数的铁素体和奥氏体相组成。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。实施了平均场和泰勒近似策略,以用于三维实体有限元分析和几何精确的Euler–Bernoulli梁,以模拟四点弯曲试验。将预测的残余应力与来自弯曲实验的实验数据进行比较,以求出特定于相的残余应力/应变,这些应力/应变已通过中子衍射在样品的弯曲高度上确定。

更新日期:2021-03-19
down
wechat
bug