当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Design and additive manufacturing of thermal metamaterial with high thermal resistance and cooling capability
Additive Manufacturing ( IF 10.3 ) Pub Date : 2021-03-19 , DOI: 10.1016/j.addma.2021.101947
Jeong-Hee You , Keun Park

Metamaterials are defined as artificially designed micro-architectures with unusual physical properties, including optical, electromagnetic, mechanical, and thermal properties. This study proposes a thermal metamaterial that provides an efficient thermal cycle with two conflicting objectives: (i) high thermal resistance as a thermal insulator and (ii) high cooling capability as a heat exchanger. To enable these conflicting objectives, we used cellular lattice structures fabricated by additive manufacturing (AM). An efficient design method based on a finite element (FE) mesh was developed to obtain boundary-conformal lattices for arbitrary 3D shapes. FE analyses were then conducted to evaluate the structural and thermal behaviors of the lattice structures. The designed lattice structures were fabricated by powder-bed fusion (PBF) type AM using Ti-6Al-4V powders. Heat conduction tests were then performed to evaluate the thermal resistance of the lattices with various strut diameters, and the resulting thermal resistance increased five to fifteen times in comparison with that of the pure material. Cooling tests were also conducted to evaluate the cooling capability of the lattices, which showed that the lattice structures could act not only as a thermal insulator but also as a heat exchanger. Consequently, the developed lattice structures can be regarded as a thermal metamaterial that is useful in various applications that require a high thermal cycle of heating and cooling.



中文翻译:

具有高耐热性和冷却能力的热超材料的设计和增材制造

超材料被定义为具有异常物理特性(包括光学,电磁,机械和热特性)的人工设计的微体系结构。这项研究提出了一种热超材料,该材料可以提供有效的热循环,并具有两个相互矛盾的目标:(i)作为热绝缘体的高热阻和(ii)作为热交换器的高冷却能力。为了实现这些相互矛盾的目标,我们使用了通过增材制造(AM)制造的蜂窝晶格结构。开发了一种基于有限元(FE)网格的有效设计方法,以获得任意3D形状的边界共形点阵。然后进行了有限元分析,以评估晶格结构的结构和热行为。通过使用Ti-6Al-4V粉末通过粉末床熔化(PBF)型AM制造设计的晶格结构。然后进行热传导测试,以评估具有不同支柱直径的晶格的热阻,并且所产生的热阻比纯材料的热阻增加了五到十五倍。还进行了冷却测试以评估晶格的冷却能力,这表明晶格结构不仅可以充当绝热体,而且还可以充当热交换器。因此,发达的晶格结构可以被认为是一种热超材料,可用于需要加热和冷却的高热循环的各种应用中。然后进行热传导测试,以评估具有不同支柱直径的晶格的热阻,并且所产生的热阻比纯材料的热阻增加了五到十五倍。还进行了冷却测试以评估晶格的冷却能力,这表明晶格结构不仅可以充当绝热体,而且还可以充当热交换器。因此,发达的晶格结构可以被认为是一种热超材料,可用于需要加热和冷却的高热循环的各种应用中。然后进行热传导测试,以评估具有不同支柱直径的晶格的热阻,并且所产生的热阻比纯材料的热阻增加了五到十五倍。还进行了冷却测试以评估晶格的冷却能力,这表明晶格结构不仅可以充当绝热体,而且还可以充当热交换器。因此,发达的晶格结构可以被认为是一种热超材料,可用于需要加热和冷却的高热循环的各种应用中。结果表明,晶格结构不仅可以充当绝热体,而且还可以充当热交换器。因此,发达的晶格结构可以被认为是一种热超材料,可用于需要加热和冷却的高热循环的各种应用中。结果表明,晶格结构不仅可以充当绝热体,而且还可以充当热交换器。因此,发达的晶格结构可以被认为是一种热超材料,可用于需要加热和冷却的高热循环的各种应用中。

更新日期:2021-03-31
down
wechat
bug