当前位置: X-MOL 学术Light Sci. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic tweezers: for nanoscale optical trapping and beyond
Light: Science & Applications ( IF 20.6 ) Pub Date : 2021-03-17 , DOI: 10.1038/s41377-021-00474-0
Yuquan Zhang 1 , Changjun Min 1 , Xiujie Dou 1, 2 , Xianyou Wang 1 , Hendrik Paul Urbach 2 , Michael G Somekh 1 , Xiaocong Yuan 1
Affiliation  

Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects. More recently, the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods. The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength; with this confinement, the plasmonic field facilitates trapping of various nanostructures and materials with higher precision. The successful manipulation of small particles has fostered numerous and expanding applications. In this paper, we review the principles of and developments in plasmonic tweezers techniques, including both nanostructure-assisted platforms and structureless systems. Construction methods and evaluation criteria of the techniques are presented, aiming to provide a guide for the design and optimization of the systems. The most common novel applications of plasmonic tweezers, namely, sorting and transport, sensing and imaging, and especially those in a biological context, are critically discussed. Finally, we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.



中文翻译:


等离激元镊子:用于纳米级光学捕获及其他



远场光镊和相关操纵工具通过提供对小物体的精确操纵,对科学和工程研究产生了重大影响。最近,利用表面等离子体进行操纵的可能性开辟了传统远场光学方法无法实现的机会。表面等离子体激元技术的使用能够激发比自由空间波长小得多的热点;通过这种限制,等离子体场有助于以更高的精度捕获各种纳米结构和材料。小颗粒的成功操控已经促进了众多且不断扩大的应用。在本文中,我们回顾了等离子体镊子技术的原理和发展,包括纳米结构辅助平台和无结构系统。提出了该技术的构建方法和评价标准,旨在为系统的设计和优化提供指导。批判性地讨论了等离子体镊子最常见的新颖应用,即分类和运输、传感和成像,特别是在生物背景下的应用。最后,我们考虑了该技术的发展前景和新的潜在应用,并讨论了其对科学影响的前景。

更新日期:2021-03-18
down
wechat
bug