当前位置: X-MOL 学术Nanotechnol. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synergistic strengthening mechanism of copper matrix composite reinforced with nano-Al2O3 particles and micro-SiC whiskers
Nanotechnology Reviews ( IF 6.1 ) Pub Date : 2021-01-01 , DOI: 10.1515/ntrev-2021-0006
Huanran Lin 1, 2, 3 , Xiuhua Guo 1, 2, 3 , Kexing Song 1, 2, 3 , Jiang Feng 1, 2, 3 , Shaolin Li 1, 2, 3 , Xiangfeng Zhang 1, 2, 3
Affiliation  

Although Cu–Al 2 O 3 composites have good comprehensive performance, higher mechanical properties and arc erosion resistance are still required to meet heavy-duty applications such as electromagnetic railguns. In this work, a novel hybrid SiC w /Cu–Al 2 O 3 composite was successfully prepared by combining powder metallurgy and internal oxidation. The microstructure and mechanical behavior of the SiC w /Cu–Al 2 O 3 composite were studied. The results show that nano-Al 2 O 3 particles and micro-SiC w are introduced into the copper matrix simultaneously. Well-bonded interfaces between copper matrix and Al 2 O 3 particles or SiC w are obtained with improved mechanical and arc erosion resistance of SiC w /Cu–Al 2 O 3 composite. The ultimate tensile strength of the SiC w /Cu–Al 2 O 3 composite is 508.9 MPa, which is 7.9 and 56.1% higher than that of the Cu–Al 2 O 3 composite and SiC w /Cu composite, respectively. The strengthening mechanism calculation shows that Orowan strengthening is the main strengthening mechanism of the SiC w /Cu–Al 2 O 3 composite. Compared with Cu–Al 2 O 3 composite, the hybrid SiC w /Cu–Al 2 O 3 composite has lower arc time and energy and better arc stability. Graphical abstract Copper matrix composites reinforced with nano-Al 2 O 3 particles and micro-SiC whiskers were prepared. Nano-Al 2 O 3 particles are uniformly dispersed in the copper matrix (Figure a), and there is an obvious amorphous transition layer at the interface between the copper matrix and SiC w (Figure d). Nano-Al 2 O 3 particles and micro-SiC whiskers reinforcing phase synergistically strengthen the SiC w /Cu–Al 2 O 3 composite.

中文翻译:

纳米Al2O3和微SiC晶须增强铜基复合材料的协同强化机理

尽管Cu–Al 2 O 3复合材料具有良好的综合性能,但仍需要更高的机械性能和耐电弧腐蚀性能,才能满足诸如电磁轨道炮之类的重型应用。在这项工作中,通过粉末冶金和内部氧化相结合,成功地制备了新型的SiC w / Cu-Al 2 O 3杂化复合材料。研究了SiC w / Cu–Al 2 O 3复合材料的微观结构和力学行为。结果表明,将纳米Al 2 O 3颗粒和微SiC w同时引入到铜基体中。获得了铜基体与Al 2 O 3颗粒或SiC w之间的键合良好的界面,从而提高了SiC w / Cu–Al 2 O 3复合材料的机械强度和耐电弧腐蚀性能。SiC w / Cu-Al 2 O 3复合材料的极限拉伸强度为508.9 MPa,分别为7.9和56。分别比Cu–Al 2 O 3复合材料和SiC w / Cu复合材料高1%。强化机理计算表明,Orowan强化是SiC w / Cu–Al 2 O 3复合材料的主要强化机理。与Cu-Al 2 O 3复合材料相比,SiC w / Cu-Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更高。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。分别。强化机理计算表明,Orowan强化是SiC w / Cu–Al 2 O 3复合材料的主要强化机理。与Cu-Al 2 O 3复合材料相比,SiC w / Cu-Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更高。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。分别。强化机理计算表明,Orowan强化是SiC w / Cu–Al 2 O 3复合材料的主要强化机理。与Cu-Al 2 O 3复合材料相比,SiC w / Cu-Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更高。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。强化机理计算表明,Orowan强化是SiC w / Cu–Al 2 O 3复合材料的主要强化机理。与Cu-Al 2 O 3复合材料相比,SiC w / Cu-Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更高。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。强化机理计算表明,Orowan强化是SiC w / Cu–Al 2 O 3复合材料的主要强化机理。与Cu-Al 2 O 3复合材料相比,SiC w / Cu-Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更高。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。SiC w / Cu–Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更好。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。SiC w / Cu–Al 2 O 3杂化复合材料的电弧时间和能量更低,电弧稳定性更好。制备了图形化的纳米Al 2 O 3颗粒和微SiC晶须增强的铜基复合材料。纳米Al 2 O 3颗粒均匀地分散在铜基体中(图a),并且在铜基体与SiC w之间的界面处存在明显的非晶态过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。在铜基体和SiC w之间的界面处有一个明显的非晶过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。在铜基体和SiC w之间的界面处有明显的非晶过渡层(图d)。纳米Al 2 O 3颗粒和增强相的微晶须协同增强了SiC w / Cu–Al 2 O 3复合材料。
更新日期:2021-01-01
down
wechat
bug