当前位置: X-MOL 学术Eng. Appl. Comput. Fluid Mech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Evaluation of novel-objective functions in the design optimization of a transonic rotor by using deep learning
Engineering Applications of Computational Fluid Mechanics ( IF 5.9 ) Pub Date : 2021-03-16 , DOI: 10.1080/19942060.2021.1895889
A. Zeinalzadeh 1 , M.R. Pakatchian 1
Affiliation  

Design optimization of transonic airfoils for rotary blades is a challenging subject that remarkably affects the stage and overall performance of axial-flow compressors. This paper describes a surrogate-based multi-objective optimization process over a transonic rotary blade. This blade works in the first high-pressure stage of a pre-designed industrial axial compressor. It experiences a massive separation behind an impinging shock wave over its suction side, resulting in very low efficiency of the whole stage. The key components of the current approach involve the application of novel-objective functions over the pressure distribution of airfoils, called the location of the shock wave and a flat-roof-top factor, to design supercritical airfoils. Moreover, to ensure the advantages of having an attached boundary layer and a high efficient blade, the area of separated boundary layer is also defined alongside other well-known objective functions related to the polar loss diagram. Notably, a sequential feed-forward multi-layer perceptron is designed to construct a mapping between airfoil geometrical variables and the objective functions. A numerical simulation of the whole compressor has shown an efficiency improvement of about 10% and 0.17% for the first stage and the whole compressor, respectively, and an attached boundary layer with a supercritical pressure distribution when employing the optimized rotor blade at the design stage.



中文翻译:

深度学习对跨音速转子设计优化中的新目标函数进行评估

用于旋转叶片的跨音速翼型的设计优化是一个具有挑战性的课题,它显着影响轴流式压缩机的阶段和整体性能。本文描述了跨音速旋转叶片上基于代理的多目标优化过程。该叶片可在预先设计的工业轴向压缩机的第一高压阶段工作。它在吸力侧的冲击波后面经历了巨大的分离,导致整个阶段的效率非常低。当前方法的关键组成部分涉及在翼型的压力分布上应用新颖的目标函数(称为冲击波的位置和顶部顶面因素)来设计超临界翼型。此外,为了确保具有附着的边界层和高效刀片的优势,与边界损耗图相关的其他众所周知的目标函数也与边界层分开定义。值得注意的是,设计了顺序前馈多层感知器来构造机翼几何变量与目标函数之间的映射。整个压缩机的数值模拟表明,在设计阶段使用优化的转子叶片时,第一阶段和整个压缩机的效率分别提高了约10%和0.17%,并且附有具有超临界压力分布的边界层。 。设计了顺序前馈多层感知器,以构造机翼几何变量与目标函数之间的映射。整个压缩机的数值模拟表明,在设计阶段使用优化的转子叶片时,第一阶段和整个压缩机的效率分别提高了约10%和0.17%,并且附有具有超临界压力分布的边界层。 。设计了顺序前馈多层感知器,以构造机翼几何变量与目标函数之间的映射。整个压缩机的数值模拟表明,在设计阶段使用优化的转子叶片时,第一阶段和整个压缩机的效率分别提高了约10%和0.17%,并且附有边界层的超临界压力分布。

更新日期:2021-03-17
down
wechat
bug