当前位置: X-MOL 学术IEEE J. Emerg. Sel. Top. Power Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis and Transition Techniques for a Bidirectional DC–DC Converter
IEEE Journal of Emerging and Selected Topics in Power Electronics ( IF 4.6 ) Pub Date : 2020-09-11 , DOI: 10.1109/jestpe.2020.3023433
Ambuj Sharma , Soumya Shubhra Nag , G. Bhuvaneswari , Mummadi Veerachary

This article proposes two new pulsewidth modulation (PWM) schemes, namely, asynchronous PWM scheme (APS) and synchronous PWM scheme (SPS), for a nonisolated fourth-order bidirectional dc–dc converter (FOBDC), which are implemented to achieve a smooth start-up operation and mode transition to reverse the direction of power flow. The presented FOBDC is reported already in the literature as a unidirectional boost converter, the functionality of which is modified in this work, to enable bidirectional power flow. The FOBDC can operate in either discharging (Mode-I) or charging (Mode-II) mode. The overshoot/undershoot of inductor currents in the FOBDC occur during converter start-up operation in either of the modes and while transitioning modes (from charging to discharging and vice-versa). To eliminate the overshoot/undershoot of inductor current, two effective transition techniques are developed for smooth start-up operation and mode transition, thereby reducing the delay time significantly. The FOBDC is modeled using the state-space modeling technique, and duty ratio-to-inductor current transfer function is derived, which is validated for resistive load and battery load. Two different compensators are designed for these two transfer functions to achieve an average current-mode control (ACMC) during the charging and discharging modes of operation. The performance of the compensators is evaluated by introducing perturbations. A 12–48-V FOBDC converter, controlled by these PWM techniques with the aforementioned features, is designed, analyzed, and experimentally verified for low-power applications.

中文翻译:

双向DC-DC转换器的分析和转换技术

本文针对非隔离的四阶双向dc-dc转换器(FOBDC)提出了两种新的脉冲宽度调制(PWM)方案,即异步PWM方案(APS)和同步PWM方案(SPS),实现这些方案以实现平滑启动操作和模式转换可逆转潮流方向。所提供的FOBDC已经在文献中作为单向升压转换器进行了报告,在此工作中对其功能进行了修改,以实现双向功率流。FOBDC可以在放电(模式-I)或充电(模式-II)模式下运行。FOBDC中的电感器电流的过冲/下冲发生在转换器启动操作期间的任何一种模式下和转换模式下(从充电到放电,反之亦然)。为了消除电感电流的过冲/下冲,开发了两种有效的过渡技术,以实现平稳的启动操作和模式过渡,从而显着减少了延迟时间。使用状态空间建模技术对FOBDC进行建模,并导出占空比与电感器的电流传递函数,并针对电阻负载和电池负载进行了验证。针对这两种传递函数设计了两种不同的补偿器,以在充电和放电操作模式期间实现平均电流模式控制(ACMC)。补偿器的性能通过引入扰动来评估。设计,分析和实验验证了由具有上述功能的这些PWM技术控制的12–48V FOBDC转换器,适用于低功耗应用。从而大大减少了延迟时间。使用状态空间建模技术对FOBDC进行建模,并导出占空比与电感器的电流传递函数,并针对电阻负载和电池负载进行了验证。针对这两种传递函数设计了两种不同的补偿器,以在充电和放电操作模式期间实现平均电流模式控制(ACMC)。补偿器的性能通过引入扰动来评估。设计,分析和实验验证了由具有上述功能的这些PWM技术控制的12–48V FOBDC转换器,适用于低功耗应用。从而大大减少了延迟时间。使用状态空间建模技术对FOBDC进行建模,并导出占空比与电感器的电流传递函数,并针对电阻负载和电池负载进行了验证。针对这两种传递函数设计了两种不同的补偿器,以在充电和放电操作模式期间实现平均电流模式控制(ACMC)。补偿器的性能通过引入扰动来评估。设计,分析和实验验证了由具有上述功能的这些PWM技术控制的12–48V FOBDC转换器,适用于低功耗应用。已针对电阻负载和电池负载进行了验证。针对这两种传递函数设计了两种不同的补偿器,以在充电和放电操作模式期间实现平均电流模式控制(ACMC)。补偿器的性能通过引入扰动来评估。设计,分析和实验验证了由具有上述功能的这些PWM技术控制的12–48V FOBDC转换器,适用于低功耗应用。已针对电阻负载和电池负载进行了验证。针对这两种传递函数设计了两种不同的补偿器,以在充电和放电操作模式期间实现平均电流模式控制(ACMC)。补偿器的性能通过引入扰动来评估。设计,分析和实验验证了由具有上述功能的这些PWM技术控制的12–48V FOBDC转换器,适用于低功耗应用。
更新日期:2020-09-11
down
wechat
bug