当前位置: X-MOL 学术Int. J. Turbo Jet Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Model Simulation and Design Optimization of a Can Combustor with Methane/Syngas Fuels for a Micro Gas Turbine
International Journal of Turbo & Jet-Engines ( IF 0.7 ) Pub Date : 2021-03-01 , DOI: 10.1515/tjj-2017-0057
Chi-Rong Liu , Ming-Tsung Sun , Hsin-Yi Shih

The design and model simulation of a can combustor has been made for future syngas combustion application in a micro gas turbine. An improved design of the combustor is studied in this work, where a new fuel injection strategy and film cooling are employed. The simulation of the combustor is conducted by a computational model, which consists of three-dimensional, compressible k-ε model for turbulent flows and PPDF (Presumed Probability Density Function) model for combustion process invoking a laminar flamelet assumption generated by detailed chemical kinetics from GRI 3.0. Thermal and prompt NO x mechanisms are adopted to predict the NO formation. The modeling results indicated that the high temperature flames are stabilized in the center of the primary zone by radially injecting the fuel inward. The exit temperatures of the modified can combustor drop and exhibit a more uniform distribution by coupling film cooling, resulting in a low pattern factor. The combustion characteristics were then investigated and the optimization procedures of the fuel compositions and fuel flow rates were developed for future application of methane/syngas fuels in the micro gas turbine.

中文翻译:

微型燃气轮机甲烷/合成气燃料罐燃烧室的模型仿真和设计优化

罐式燃烧器的设计和模型仿真已经为将来在微型燃气轮机中的合成气燃烧应用进行了设计。在这项工作中研究了燃烧器的改进设计,其中采用了新的燃料喷射策略和薄膜冷却。燃烧室的模拟是通过一个计算模型进行的,该模型包括用于湍流的三维可压缩k-ε模型和用于燃烧过程的PPDF(假定概率密度函数)模型,该模型调用层状小火焰假设,该假设由详细的化学动力学产生。 GRI 3.0。采用热和快速NO x机理来预测NO的形成。模拟结果表明,通过向内径向喷射燃料,高温火焰在主要区域的中心得以稳定。改性剂的出口温度可通过耦合膜冷却而燃烧器下降,并表现出更均匀的分布,从而导致较低的图案系数。然后研究了燃烧特性,并开发了燃料成分和燃料流速的优化程序,以供将来将甲烷/合成气燃料应用在微型燃气轮机中。
更新日期:2021-03-16
down
wechat
bug