当前位置: X-MOL 学术J. Propuls. Power › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Gas Turbine/Solid Oxide Fuel Cell Hybrids for Aircraft Propulsion and Power
Journal of Propulsion and Power ( IF 1.7 ) Pub Date : 2021-03-15 , DOI: 10.2514/1.b38026
Daniel F. Waters 1 , Lucas M. Pratt 1 , Christopher P. Cadou 1
Affiliation  

The impact on range and endurance of increasing electrical loads on aircraft and burgeoning interest in all-electric aircraft are driving a need for more efficient replacements for engine-driven mechanical generators. This Paper presents a model of a synergistic gas turbine/solid oxide fuel cell system for combined propulsion and electrical power on aircraft. It is developed using Numerical Propulsion System Simulation and features realistic representations of the engine, reformer (a catalytic partial oxidation reactor), solid oxide fuel cell, and external aerodynamic losses. The results show that incorporating the reformer and fuel cell directly into the engine’s flowpath reduces vehicle-level fuel consumption of a high-altitude long-endurance aircraft at cruise by at least 8% when the engine is mounted inside the fuselage and at least 4% when the engine is installed within a nacelle. It also increases electrical generation capability by factors of 2 or more versus engine-driven mechanical generators in several aircraft applications. The main limitation in nacelle-mounted applications is increased external aerodynamic drag associated with the protrusion of the fuel cell into the flow around the engine, but it is shown that this can be mitigated through tight integration with high-pressure-ratio engines and careful flowpath design.



中文翻译:

用于飞机推进和动力的燃气轮机/固体氧化物燃料电池混合动力车

飞机上不断增加的电气负载对航程和续航力的影响以及对全电动飞机的兴趣日益浓厚,这促使人们需要更高效地替代发动机驱动的机械发电机。本文提出了一种用于飞机上推进和电力组合的燃气轮机/固体氧化物协同燃料电池系统的模型。它是使用数值推进系统仿真技术开发的,具有发动机,重整器(催化部分氧化反应器),固体氧化物燃料电池和外部空气动力学损失的逼真的表示。结果表明,将重整器和燃料电池直接安装到发动机的流路中时,当发动机安装在机身内部时,巡航时高海拔长寿命飞机的车辆级燃料消耗至少降低了8%,而至少降低了4%当发动机安装在机舱内时。与几种飞机应用中的发动机驱动机械发电机相比,它还将发电能力提高了2倍或更多倍。机舱安装应用的主要局限性是与燃料电池突出进入发动机周围气流相关的外部空气阻力增加,但事实表明,可以通过与高压比率发动机紧密结合并保持谨慎的流路来减轻这种情况设计。与几种飞机应用中的发动机驱动机械发电机相比,它还将发电能力提高了2倍或更多倍。机舱安装应用的主要局限性是与燃料电池突出进入发动机周围的气流相关的外部空气动力阻力的增加,但事实表明,可以通过与高压比率发动机紧密结合并保持谨慎的流路来缓解这种情况设计。与几种飞机应用中的发动机驱动机械发电机相比,它还将发电能力提高了2倍或更多倍。机舱安装应用的主要局限性是与燃料电池突出进入发动机周围的气流相关的外部空气动力阻力的增加,但事实表明,可以通过与高压比率发动机紧密结合并保持谨慎的流路来缓解这种情况设计。

更新日期:2021-03-15
down
wechat
bug