当前位置: X-MOL 学术Phys. Earth Planet. Inter. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The topography of the Iberian Peninsula from integrated geophysical-petrological multi-data inversion
Physics of the Earth and Planetary Interiors ( IF 2.4 ) Pub Date : 2021-03-13 , DOI: 10.1016/j.pepi.2021.106691
J. Fullea , A.M. Negredo , M. Charco , I. Palomeras , J.C. Afonso , A. Villaseñor

The topography of the Iberian Peninsula is characterized by the presence of Variscan and Alpine orogenic belts and foreland basins, but what sets it apart from the rest of Western Europe are the large elevated flat surfaces (700 m above sea-level on average) in its central parts. The origin and support of such high average topography, whether isostatic or dynamic in nature, is a matter of intense debate. To understand Iberian topography, it is key to have a reliable image of the present-day lithospheric thermochemical structure. So far, this structure remains poorly constrained, particularly at mantle level. The goal of this paper is to derive robust estimates of the thermal, compositional and density structure of the lithosphere beneath the Iberian Peninsula from an integrated geophysical-petrological probabilistic inversion of surface wave, elevation, geoid anomaly and heat flow data. Our inversion reveals an average lithospheric thickness of 80–100 km in the Iberian Peninsula with only moderate lateral variations. The most prominent lithospheric thickness change is a steep decrease from the central to the easternmost Pyrenees. The thinnest lithosphere in our models is found below the south-eastern Mediterranean margin (<80 km), overlapping with the Neogene Tallante-Cabo de Gata volcanic fields. The present-day thermochemical structure reveals a clear imprint of the geodynamic evolution of Iberia. Lithospheric thickness and, therefore, lithospheric geotherms are to a large extent related to Alpine Cenozoic compression and extension. The western Pyrenees and Iberian chains seem to have been affected by Mesozoic rifting processes that imprinted a fertile signature into the originally more refractory Variscan Iberian lithosphere. In the Betic domain to the south, the lithospheric thermochemical structure is likely conditioned by the ongoing Alboran subduction. Except for the Mediterranean margin, where we find evidence for moderate negative dynamic topography, most of the surface elevation in Iberia can be explained by lateral density contrasts associated with variations in crustal and lithospheric thickness and lithology.



中文翻译:

综合地球物理-岩石学多数据反演的伊比利亚半岛地形

伊比利亚半岛的地形特征是存在瓦里斯坎和高山造山带和前陆盆地,但与西欧其他地区不同的是,伊比利亚半岛的高抬高平坦表面(平均高出海平面700 m)中央部分。如此高的平均地形的起源和支持,无论是静态的还是动态的,都引起了激烈的争论。要了解伊比利亚地形,获取当今岩石圈热化学结构的可靠图像非常关键。到目前为止,这种结构的约束力仍然很差,特别是在地幔层。本文的目的是从表面波的综合地球物理-岩石学概率反演中,得出伊比利亚半岛下方岩石圈热,组成和密度结构的可靠估计,高程,大地水准面异常和热流数据。我们的反演结果显示,伊比利亚半岛的岩石圈平均厚度为80–100 km,只有较小的横向变化。从比利牛斯山脉中部到最东部,岩石圈厚度变化最为明显。我们模型中最薄的岩石圈位于地中海东南缘(<80 km)以下,与新近系的塔兰特-卡波德加塔角火山田重叠。当今的热化学结构揭示了伊比利亚地球动力学演化的清晰烙印。岩石圈厚度和岩石圈地热在很大程度上与高山新生代压缩和伸展有关。比利牛斯山脉和伊比利亚西部链条似乎受到中生代裂谷作用的影响,该过程将肥沃的印记印在原本较难熔的瓦里斯坎伊比利亚岩石圈中。在南部的比蒂特地区,岩石圈的热化学结构很可能受到正在进行的Alboran俯冲作用的调节。除了地中海边缘,我们在其中发现中等程度的负动态地形的证据外,伊比利亚的大部分表面高度可以通过与地壳和岩石圈厚度和岩性变化相关的横向密度对比来解释。

更新日期:2021-03-24
down
wechat
bug