当前位置: X-MOL 学术Mech. Res. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Capillary-induced deformation of an initially stressed neoHookean solid: A sessile liquid droplet
Mechanics Research Communications ( IF 1.9 ) Pub Date : 2021-03-15 , DOI: 10.1016/j.mechrescom.2021.103688
Yuan Sun , Wenxiao Zhou , Shaojie Xin , Fuqian Yang

The development in lab-on-a-chip and flexible electronics has attracted great interest to understand the fluid-structure interaction. In this work, we analyze the capillary-induced deformation of an initially stressed neoHookean solid with an axisymmetric, sessile droplet on the surface in the framework of the incremental deformation theory. The neoHookean material is subjected initially to uniformly biaxial loading (stretching or compressing). Using the incremental deformation theory and the concept of breadth, we derive an explicit solution of the normal displacement component of the surface of the initially stressed neoHookean solid, which consists of a scaling factor and a shape function. The scaling factor decreases with the increase of the biaxial stretch, leading to the decrease in the deformation induced by the sessile droplet. The initially biaxial compression of the neoHookean solid increases the scaling factor. There is a critical-initial compression loading, at which the surface deformation changes from convex shape to concave shape. Increasing the ratio of the breadth to the radius of the contact zone between the sessile droplet and the initially stressed neoHookean solid increases the maximum value of the shape function.



中文翻译:

毛细血管引起的最初受应力的新霍克固体变形:固着液滴

芯片实验室和柔性电子技术的发展引起了人们对了解流体-结构相互作用的极大兴趣。在这项工作中,我们在增量变形理论的框架内,分析了初始应力的新霍克固体在表面上的轴对称无柄液滴的毛细管诱导变形。新霍克材料首先受到均匀的双轴载荷(拉伸或压缩)。使用增量变形理论和宽度概念,我们得出了初始受应力的新霍克实体的表面法向位移分量的显式解,它由比例因子和形状函数组成。比例因子随着双轴拉伸的增加而减小,导致固着液滴引起的变形减小。NeoHookean实体的初始双轴压缩会增加缩放比例。存在临界初始压缩载荷,在该载荷下,表面变形从凸形变为凹形。增加固着液滴与最初受应力的新胡克固体之间的接触区域的宽度与半径之比,会增加形状函数的最大值。

更新日期:2021-03-21
down
wechat
bug