当前位置: X-MOL 学术J. Quant. Spectrosc. Radiat. Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optical absorption analysis of core-shell type Ni@Ag/Au & NiFe@Ag/Au magneto-plasmonic nanostructures
Journal of Quantitative Spectroscopy and Radiative Transfer ( IF 2.3 ) Pub Date : 2021-03-15 , DOI: 10.1016/j.jqsrt.2021.107646
Pradeep Bhatia , S.S. Verma , M.M. Sinha

The core-shell nanoparticles are greatly advocated for their usefulness in biomedical applications tending to targeted drug delivery, sensing, and bio-imaging. In this paper, the optical properties of simple; Ni@Ag/Au and complex; NiFe@Ag/Au magnetoplasmonic nanoparticles for their core-shell structures with spherical and prolate geometries are comprehensively investigated using the discrete dipole approximation (DDA) method. It is found that the Localized Surface Plasmon Resonance (LSPR) for absorption (λmax) as well as efficiency (intensity) strongly depend on the geometry of the nanoparticle, aspect ratio, core sizes, and shell thickness. The absorption spectra which are generally found in the 335–717 nm wavelength ranges can be tuned in the ultra violet-near-infrared (UV-NIR) region of the electromagnetic (EM) spectrum for desired biomedical applications. It is discovered that there is a higher tunability of LSPR peak position as well as larger enhancement in the absorption efficiency when the spherical nanoparticle stretches to prolate core-shell configuration. Based on these findings, therefore, it is suggested that the proposed core-shell nanostructures with the tunable optical response in the visible region have potentials in cancer therapy, drug delivery, and optical imaging.



中文翻译:

核-壳型Ni @ Ag / Au和NiFe @ Ag / Au磁等离子体纳米结构的光吸收分析

核壳纳米粒子因其在倾向于靶向药物输送,传感和生物成像的生物医学应用中的实用性而受到大力提倡。本文的光学性质简单;Ni @ Ag / Au及其络合物;使用离散偶极近似(DDA)方法对NiFe @ Ag / Au磁等离子体纳米颗粒的核壳结构进行了球形和扁长的几何形状研究。发现吸收的局部表面等离子体共振(LSPR)(λmax)以及效率(强度)在很大程度上取决于纳米粒子的几何形状,长宽比,核尺寸和壳厚度。通常在335–717 nm波长范围内发现的吸收光谱可以在电磁(EM)光谱的紫外-近红外(UV-NIR)区域进行调整,以实现所需的生物医学应用。发现当球形纳米颗粒拉伸成扁长的核-壳构型时,LSPR峰位置具有更高的可调谐性以及吸收效率的更大提高。因此,基于这些发现,建议所提出的在可见区域具有可调光响应的核-壳纳米结构在癌症治疗,药物递送和光学成像方面具有潜力。

更新日期:2021-03-23
down
wechat
bug