当前位置: X-MOL 学术Arch. Rational Mech. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Crystallization to the Square Lattice for a Two-Body Potential
Archive for Rational Mechanics and Analysis ( IF 2.6 ) Pub Date : 2021-03-11 , DOI: 10.1007/s00205-021-01627-6
Laurent Bétermin , Lucia De Luca , Mircea Petrache

We consider two-dimensional zero-temperature systems of N particles to which we associate an energy of the form

$$\begin{aligned} \mathcal {E}[V](X):=\sum _{1\leqq i<j\leqq N}V(|X(i)-X(j)|), \end{aligned}$$

where \(X(j)\in \mathbb R^2\) represents the position of the particle j and \(V(r)\in \mathbb R\) is the pairwise interaction energy potential of two particles placed at distance r. We show that under suitable assumptions on the single-well potential V, the ground state energy per particle converges to an explicit constant \(\overline{\mathcal E}_{\mathrm {sq}}[V]\), which is the same as the energy per particle in the square lattice infinite configuration. We thus have

$$\begin{aligned} N{\overline{\mathcal E}_{\mathrm {sq}}[V]}\leqq \min _{X:\{1,\ldots ,N\}\rightarrow \mathbb R^2}\mathcal E[V](X)\leqq N{\overline{\mathcal E}_{\mathrm {sq}}[V]}+O(N^{\frac{1}{2}}). \end{aligned}$$

Moreover \(\overline{\mathcal E}_{\mathrm {sq}}[V]\) is also re-expressed as the minimizer of a four point energy. In particular, this happens if the potential V is such that \(V(r)=+\infty \) for\(r<1\), \(V(r)=-1\) for \(r\in [1,\sqrt{2}]\), \(V(r)=0\) if \(r>\sqrt{2}\), in which case \({\overline{\mathcal E}_{\mathrm {sq}}[V]}=-4\). To the best of our knowledge, this is the first proof of crystallization to the square lattice for a two-body interaction energy.



中文翻译:

两体势的方晶格结晶

我们考虑N粒子的二维零温度系统,我们将形式能量与之关联

$$ \ begin {aligned} \ mathcal {E} [V](X):= \ sum _ {1 \ leqq i <j \ leqq N} V(| X(i)-X(j)|),\结束{aligned} $$

其中\(X(J)\在\ mathbb R ^ 2 \)表示颗粒的位置Ĵ\(V(R)\在\ mathbb r \)被成对相互作用能量两个粒子的放置在距离潜在ř。我们表明,在单阱电势V的适当假设下,每个粒子的基态能量收敛到一个显式常数\(\ overline {\ mathcal E} _ {\ mathrm {sq}} [V] \),即等于方格无限配置中每个粒子的能量。因此,我们有

$$ \ begin {aligned} N {\ overline {\ mathcal E} _ {\ mathrm {sq}} [V]} \ leqq \ min _ {X:\ {1,\ ldots,N \} \ rightarrow \ mathbb R ^ 2} \ mathcal E [V](X)\ leqq N {\ overline {\ mathcal E} _ {\ mathrm {sq}} [V]} + O(N ^ {\ frac {1} {2} })。\ end {aligned} $$

此外,\(\ overline {\ mathcal E} _ {\ mathrm {sq}} [V] \)也被重新表示为四点能量的最小化器。特别地,这种情况如果电位V是这样的:\(V(R)= + \ infty \)\(R <1 \) \(V(R)= - 1 \)\(R \在[1,\ SQRT {2}] \)\(V(R)= 0 \)如果\(R> \ SQRT {2} \),在这种情况下\({\划线{\ mathcalë} _ { \ mathrm {sq}} [V]} =-4 \)。据我们所知,这是两体相互作用能结晶成方格的第一个证明。

更新日期:2021-03-12
down
wechat
bug