当前位置: X-MOL 学术Mater. Sci. Eng. R Rep. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Structure-properties relationships of cellular materials from biobased polyurethane foams
Materials Science and Engineering: R: Reports ( IF 31.6 ) Pub Date : 2021-03-10 , DOI: 10.1016/j.mser.2021.100608
Julien Peyrton , Luc Avérous

The polyurethanes (PU) are a very versatile family of materials mainly obtained by combinations of polyols and polyisocyanates. Based on their annual worldwide production of around 20 million tons and a global market of $50 billion (2016), PUs rank 6th among all polymers. Through their value chain, PUs involve different players: (i) the chemists producing most of PUs raw materials, (ii) the PUs producers from the raw materials, (iii) the compounders/assemblers who formulate PUs into their final products, and finally (iv) the end-users. Due to the multiplicity of their structures, PUs can be used in various forms and applications. Cellular materials are the largest part of this market (more than 60 %) with segments including the furniture, automotive, bedding, insulation, building or construction markets. Two main types of foam can be fabricated: (i) flexible with open cells, stress and tensile properties, e.g., furniture or bedding, and (ii) rigid with closed cells, low thermal conductivity, low density and high dimensional stability mainly for thermal insulation, e.g., building industries. The formulation step significantly influences the microstructure or morphology of these cellular materials and impacts the final foam properties. Even if some partially biobased compounds (polyols) can be used, commercial PU cellular materials are till now mainly based on fossil resources. However, future materials will combine high performance with low environmental impact in order to fulfill societal expectations. In this way, new biobased compounds combining different fields such as biotech, chemistry, science and materials engineering are more and more used in complex formulations for renewable foams, leading to specific renewable macromolecular architectures.

This review aims to highlight the main biobased components (polyols, polyisocyanates and additives) used in formulations for PU foams, in relation to the corresponding fabrications, morphologies and properties. The main renewable sources come from (mono and poly)sugars, oleo-chemistry, polyphenols (lignins, tannins …), or different compounds from white biotech processes from agro-wastes … The impact of these different components on material performances is discussed more particularly for rigid polyurethane foams. The structure-property relationships are analyzed with a scope on cellular morphology, mechanical, thermal properties, fire resistance, and insulation behavior. Finally, an analysis focus on future perspectives on biobased PU foams is conducted.



中文翻译:

生物基聚氨酯泡沫多孔材料的结构-性能关系

聚氨酯(PU)是一种用途非常广泛的材料,主要通过多元醇和多异氰酸酯的组合获得。基于其全球年产量约2000万吨和全球市场500亿美元(2016年),PU在所有聚合物中排名第六。PU在其价值链中涉及不同的参与者:(i)生产大多数PU原材料的化学家,(ii)从原材料中生产PU的生产商,(iii)将PU制成最终产品的配料商/组装商,最后(iv)最终用户。由于其结构的多样性,PU可以以各种形式和应用来使用。蜂窝材料是这个市场的最大部分(超过60%),细分市场包括家具,汽车,床上用品,保温材料,建筑或建筑市场。可以制造两种主要类型的泡沫:(i)具有开孔的挠性,应力和拉伸特性,例如家具或床上用品;以及(ii)具有闭孔的刚性,低导热率,低密度和高尺寸稳定性,主要用于绝热,例如建筑工业。配制步骤显着影响这些多孔材料的微观结构或形态,并影响最终的泡沫性能。即使可以使用某些部分基于生物的化合物(多元醇),到目前为止,商用PU蜂窝材料仍主要基于化石资源。但是,未来的材料将高性能和低环境影响结合在一起,以满足社会的期望。这样,新的基于生物的化合物结合了不同领域,例如生物技术,化学,

这篇综述旨在突出PU泡沫配方中使用的主要生物基成分(多元醇,多异氰酸酯和添加剂),以及相应的制造工艺,形态和性能。主要的可再生资源来自(单糖和多糖)糖,油脂化学,多酚(木质素,单宁……)或来自农业废料的白色生物技术过程中的不同化合物……这些不同成分对材料性能的影响将更详细地讨论。用于硬质聚氨酯泡沫。在细胞形态,机械,热性能,耐火性和绝缘性能的范围内分析了结构-特性关系。最后,对生物基聚氨酯泡沫的未来前景进行了分析。

更新日期:2021-03-11
down
wechat
bug