当前位置: X-MOL 学术Acta Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Ground movements induced by installation of twin large diameter deeply-buried caissons: 3D numerical modeling
Acta Geotechnica ( IF 5.6 ) Pub Date : 2021-03-11 , DOI: 10.1007/s11440-021-01165-1
Fengwen Lai , Ningning Zhang , Songyu Liu , Yanxiao Sun , Yaoliang Li

The assessment and control of ground movements during the installation of large diameter deeply-buried (LDDB) caissons are critically important to maintain the stability of surrounding infrastructures. However, for twin LDDB caissons which have been installed worldwide, no well-documented guidelines for assessing the induced ground movements are available due to the complexities of caisson–soil interaction. To this end, considering the mechanical boundaries of caissons and mechanized installation process, this paper presents a simple kinematic mechanical model balancing both computational cost and accuracy, which can be easily incorporated in commercial finite-element (FE) programs. Based on a project of twin LDDB caissons alternately installed employing a newly developed installation technology in wet ground with stiff clays in Zhenjiang, China, a three-dimensional (3D) numerical model is developed to capture the ground movements in terms of surface settlements and radial displacements induced by the installation of twin LDDB caissons. Moreover, hardening soil model with small-strain stiffness (HSSmall model) conceptually capable of capturing the nonlinear soil stiffness from very small to large strain levels is used to simulate undrained ground. The validations against field observations, empirical predictions and centrifuge test data are carried out to demonstrate the accuracy and validity of the developed FE model. Subsequently, the comparisons of ground movements numerically obtained in three frequently used installation schemes (i.e., synchronous, asynchronous and alternating installation) are conducted for installation sequence optimization of twin caissons. It is found that synchronous installation is the optimal scheme for limiting ground movements. Parametric studies considering the effects of horizontal spacing between twin caissons, staged penetration depth, inner diameter, controllable soil-plugging height, frictional coefficient between caisson–soil interface, as well as cutting edge gradient are thus performed in synchronous installation scheme. Based on an artificial data set generated through FE calculation, the multivariate adaptive regression splines (MARS) model capable of accurately capturing the nonlinear relationships between a set of input variables and output variables in multi-dimensions is used to analyze the sensitivity of caisson design parameters. Finally, the MARS mathematical equations for predicting the maximum surface settlement and radial displacement used in preliminary caisson design are proposed.

更新日期:2021-03-11
down
wechat
bug