当前位置: X-MOL 学术Int. J. Aerosp. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Aerodynamic Optimization Design of a Supersonic Compressor Rotor with High Pressure Ratio
International Journal of Aerospace Engineering ( IF 1.1 ) Pub Date : 2021-03-10 , DOI: 10.1155/2021/6664968
Cui Cui 1 , Zhenggui Zhou 1, 2 , Endor Liu 1
Affiliation  

Supersonic compressors have a high wheel speed and operational capability, which facilitate a high stage pressure ratio. However, the strong shock waves in the passage of a supersonic rotor and the interference between shock waves and boundary layers can lead to large flow loss and low efficiency. Moreover, the existing design of a high-load supersonic compressor has the problem of small stall margin. In this study, an automatic optimization method including 2D profile optimization and 3D blade optimization is proposed to achieve a high efficiency at the design point of a supersonic compressor rotor under the premise of reaching the desired mass flow rate and total pressure ratio. According to the analysis of flow near the stall point of the supersonic compressor rotor, the mechanism responsible for rotor tip stall is established, that is, the aerodynamic throat appeared inside the flow passage, reducing the ability of the blade tip to withstand back pressure, and the low-speed areas caused by the tip-leakage-vortex breakage and boundary layer separation reduced the flow capacity of the blade tip. Based on the reasons for rotor stall, three methods are proposed to improve the stall margin, which include increasing the exit radius of the upper meridian, forward sweep of the blade tip, and increasing the chord length of the blade tip. The above method is used to design a supersonic rotor with a total pressure ratio of 2.8, which exhibits an efficiency of 0.902 at the design point and a stall margin of 18.11%.

中文翻译:

超音速压气机转子气动优化设计。

超音速压缩机具有较高的叶轮速度和运行能力,可促进较高的级压比。然而,超音速转子通过时产生的强烈冲击波以及冲击波与边界层之间的干扰会导致大的流量损失和低效率。而且,现有的高负荷超音速压缩机的设计存在失速裕度小的问题。在这项研究中,提出一种包括2D轮廓优化和3D叶片优化的自动优化方法,以在达到所需质量流量和总压比的前提下,在超音速压缩机转子的设计点实现高效率。根据对超音速压缩机转子失速点附近流动的分析,建立了引起转子叶尖失速的机理,即 空气动力学的喉咙出现在流道内部,从而降低了叶尖承受背压的能力,并且由叶尖泄漏涡旋破裂和边界层分离引起的低速区域降低了叶尖的流量。基于转子失速的原因,提出了三种提高失速裕度的方法,包括增加上子午线的出口半径,叶尖的前掠和增加叶尖的弦长。上述方法用于设计总压力比为2.8的超音速转子,在设计时效率为0.902,失速裕度为18.11%。尖端泄漏涡旋破裂和边界层分离引起的低速区域降低了叶片尖端的流量。基于转子失速的原因,提出了三种提高失速裕度的方法,包括增加上子午线的出口半径,叶尖的前掠和增加叶尖的弦长。上述方法用于设计总压力比为2.8的超音速转子,在设计时效率为0.902,失速裕度为18.11%。尖端泄漏涡旋破裂和边界层分离引起的低速区域降低了叶片尖端的流量。基于转子失速的原因,提出了三种提高失速裕度的方法,包括增加上子午线的出口半径,叶尖的前掠和增加叶尖的弦长。上述方法用于设计总压力比为2.8的超音速转子,在设计时效率为0.902,失速裕度为18.11%。并增加叶片尖端的弦长。上述方法用于设计总压力比为2.8的超音速转子,在设计时效率为0.902,失速裕度为18.11%。并增加叶片尖端的弦长。上述方法用于设计总压力比为2.8的超音速转子,在设计时效率为0.902,失速裕度为18.11%。
更新日期:2021-03-10
down
wechat
bug