当前位置: X-MOL 学术SIAM J. Math. Anal. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Classification of Nonnegative Solutions to Static Schrödinger--Hartree--Maxwell Type Equations
SIAM Journal on Mathematical Analysis ( IF 2.2 ) Pub Date : 2021-03-09 , DOI: 10.1137/20m1341908
Wei Dai , Zhao Liu , Guolin Qin

SIAM Journal on Mathematical Analysis, Volume 53, Issue 2, Page 1379-1410, January 2021.
In this paper, we are mainly concerned with the physically interesting static Schrödinger--Hartree--Maxwell type equations $(-\Delta)^{s}u(x)=(\frac{1}{|x|^{\sigma}}\ast |u|^{p})u^{q}(x) \,\,\ {in} \,\,\, \mathbb{R}^{n}$ involving higher-order or higher-order fractional Laplacians, where $n\geq1$, $0<s:=m+\frac{\alpha}{2}<\frac{n}{2}$, $m\geq0$ is an integer, $0<\alpha\leq2$, $0<\sigma<n$, $0<p\leq\frac{2n-\sigma}{n-2s}$, and $0<q\leq\frac{n+2s-\sigma}{n-2s}$. We first prove the super poly-harmonic properties of nonnegative classical solutions to the above PDEs, then show the equivalence between the PDEs and the following integral equations $u(x)=\int_{\mathbb{R}^n}\frac{R_{2s,n}}{|x-y|^{n-2s}}(\int_{\mathbb{R}^{n}}\frac{1}{|y-z|^{\sigma}}u^p(z)dz)u^{q}(y)dy.$ Finally, we classify all nonnegative solutions to the integral equations via the method of moving spheres in integral form. As a consequence, we obtain the classification results of nonnegative classical solutions for the PDEs and hence derive the sharp constants for related Hardy--Littlewood--Sobolev inequalities. Our results completely improved the classification results in [4, 23, 24, 25, 44] to the full range of $s$, $\sigma$, $p$, and $q$. In critical and supercritical-order cases (i.e., $\frac{n}{2}\leq s:=m+\frac{\alpha}{2}<+\infty$), we also derive Liouville type theorems.


中文翻译:

静态Schrödinger-Hartree-Maxwell型方程的非负解的分类

SIAM数学分析杂志,第53卷,第2期,第1379-1410页,2021年1月。
在本文中,我们主要关注物理上有趣的静态Schrödinger-Hartree-Maxwell型方程$(-\ Delta)^ {s} u(x)=(\ frac {1} {| x | ^ {\ sigma}} \ ast | u | ^ {p})u ^ {q}(x)\,\,\ {in} \,\,\,\ mathbb {R} ^ {n} $涉及高阶或高阶分数拉普拉斯算子,其中$ n \ geq1 $,$ 0 <s:= m + \ frac {\ alpha} {2} <\ frac {n} {2} $,$ m \ geq0 $是整数,$ 0 < \ alpha \ leq2 $,$ 0 <\ sigma <n $,$ 0 <p \ leq \ frac {2n- \ sigma} {n-2s} $和$ 0 <q \ leq \ frac {n + 2s- \ sigma} {n-2s} $。我们首先证明上述PDE的非负经典解的超多调和性质,然后证明PDE与以下积分方程$ u(x)= \ int _ {\ mathbb {R} ^ n} \ frac { R_ {2s,n}} {| xy | ^ {n-2s}}(\ int _ {\ mathbb {R} ^ {n}} \ frac {1} {| yz | ^ {\ sigma}} u ^ p (z)dz)u ^ {q}(y)dy。$最后,我们通过以积分形式移动球体的方法对积分方程的所有非负解进行分类。结果,我们获得了PDE的非负经典解的分类结果,并因此推导了相关的Hardy-Littlewood-Sobolev不等式的尖锐常数。我们的结果将[4、23、24、25、44]中的分类结果完全改善到$ s $,$ \ sigma $,$ p $和$ q $的整个范围。在临界和超临界顺序的情况下(即$ \ frac {n} {2} \ leq s:= m + \ frac {\ alpha} {2} <+ \ infty $),我们还导出了Liouville型定理。我们的结果将[4、23、24、25、44]中的分类结果完全改善到$ s $,$ \ sigma $,$ p $和$ q $的整个范围。在临界和超临界顺序的情况下(即$ \ frac {n} {2} \ leq s:= m + \ frac {\ alpha} {2} <+ \ infty $),我们还导出了Liouville型定理。我们的结果将[4、23、24、25、44]中的分类结果完全改善到$ s $,$ \ sigma $,$ p $和$ q $的整个范围。在临界和超临界顺序的情况下(即$ \ frac {n} {2} \ leq s:= m + \ frac {\ alpha} {2} <+ \ infty $),我们还导出了Liouville型定理。
更新日期:2021-03-10
down
wechat
bug