当前位置: X-MOL 学术React. Chem. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent developments in microreactor technology for biocatalysis applications
Reaction Chemistry & Engineering ( IF 3.4 ) Pub Date : 2021-3-4 , DOI: 10.1039/d1re00024a
Eduardo J. S. Brás 1, 2, 3, 4, 5 , Virginia Chu 1, 2, 3 , João Pedro Conde 1, 2, 3, 5, 6 , Pedro Fernandes 2, 3, 4, 5, 7
Affiliation  

Biocatalytic processes are amongst the most cost efficient and sustainable methods of production of high-value biological compounds, as well as several chemical commodities. These enzyme-based processes require lengthy optimization studies that can become extremly costly due to the amount of the catalyst required for a thorough testing of a wide array of working conditions. Microfluidics technology, which enables the manipulation of liquids in the range from a few nL to μL, presents itself as an interesting alternative to traditional optimization sequences. By using microfluidics, one can drastically reduce the amount of enzyme used per working condition tested, which will drive down the cost of optimization. Besides this, microfluidics technology allows for a high degree of parallelization which enables the testing of a wide variety of process conditions in a short time frame when compared to traditional approaches such as well plate technology. In this review article, we aim to clarify some basic definitions concerning the use of microfluidics technology, while providing examples of multiple approaches, with varying degrees of complexity, being used throughout the world. It is our intent to demonstrate not only the usefulness of these devices for the improvement of industrial processing, but also to show our colleagues the advantages of implementing this type of technology in academic research labs across the globe.

中文翻译:

用于生物催化应用的微反应器技术的最新进展

生物催化工艺是生产高价值生物化合物以及几种化学商品的最具成本效益和可持续性的方法之一。这些基于酶的过程需要冗长的优化研究,由于要对各种工作条件进行全面测试所需要的催化剂量,这可能会变得极其昂贵。微流体技术使液体​​的处理范围从几nL到μL不等,它本身已成为传统优化序列的有趣替代品。通过使用微流体技术,可以大大减少每种测试工作条件下使用的酶量,这将降低优化成本。除此以外,与传统方法(如孔板技术)相比,微流体技术可实现高度并行化,从而可在短时间内测试多种工艺条件。在这篇评论文章中,我们旨在阐明有关微流体技术使用的一些基本定义,同时提供在全世界范围内使用的各种方法的示例,这些方法具有不同程度的复杂性。我们的目的不仅是展示这些设备对改善工业加工的有用性,而且还向我们的同事展示在全球学术研究实验室中实施这种技术的优势。我们旨在澄清有关微流体技术使用的一些基本定义,同时提供在全球范围内使用的各种方法的示例,这些方法具有不同程度的复杂性。我们的目的不仅是展示这些设备对改善工业加工的有用性,而且还向我们的同事展示在全球学术研究实验室中实施这种技术的优势。我们旨在澄清有关微流体技术使用的一些基本定义,同时提供在全球范围内使用的各种方法的示例,这些方法具有不同程度的复杂性。我们的目的不仅是展示这些设备对改善工业加工的有用性,而且还向我们的同事展示在全球学术研究实验室中实施这种技术的优势。
更新日期:2021-03-10
down
wechat
bug