当前位置: X-MOL 学术Int. J. Impact. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Constitutive modelling of UHPCC material under impact and blast loadings
International Journal of Impact Engineering ( IF 5.1 ) Pub Date : 2021-03-10 , DOI: 10.1016/j.ijimpeng.2021.103860
Shangbin Yang , Xiangzhen Kong , Hao Wu , Qin Fang , Hengbo Xiang

Ultra-high performance cement based composite (UHPCC) is a prospective material for protective structures subjected to intensive loadings such as impact and blast due to its prominent dynamic mechanical properties. With the aid of an accurate material model, numerical simulation plays an increasingly important role in prediction of dynamic responses of UHPCC structures. It is known that existing concrete material models are developed for traditional concrete and cannot be applied to UHPCC material directly. In the present study, a new constitutive model of UHPCC material under impact and blast loadings is developed, which involves proposing a new tensile damage model for UHPCC which is then incorporated into the Kong-Fang material model recently developed (Int J Impact Eng 2018, 120: 60-78), and calibrating parameters of this modified material model based on existing test data. The modified material model for UHPCC is implemented into the finite element code LS-DYNA through user defined material model. Single element tests including unconfined uniaxial compression and tension and triaxial compression are firstly conducted to demonstrate the improved performances of the modified material model for UHPCC material. Then three selected experiments on UHPCC structures subjected to impact and blast loadings are numerically simulated and compared with corresponding experimental data. Numerical predictions by the modified material model are well consistent with experimental data in terms of impact force, deflection and failure.



中文翻译:

冲击和爆炸载荷下UHPCC材料的本构模型

超高性能水泥基复合材料(UHPCC)由于其突出的动态机械性能而成为承受强烈载荷(例如冲击和爆炸)的防护结构的前瞻性材料。借助于精确的材料模型,数值模拟在预测UHPCC结构的动力响应中起着越来越重要的作用。众所周知,现有的混凝土材料模型是为传统混凝土开发的,不能直接应用于UHPCC材料。在本研究中,开发了一种在冲击和爆炸载荷下的UHPCC材料本构模型,其中包括为UHPCC提出新的拉伸损伤模型,然后将其纳入最近开发的Kong-Fang材料模型中(Int J Impact Eng 2018, 120:60-78),并根据现有测试数据校准此修改后的材料模型的参数。通过用户定义的材料模型将用于UHPCC的修改后的材料模型实现为有限元代码LS-DYNA。首先进行了无限制单轴压缩,拉伸和三轴压缩的单元素测试,以证明改进的材料模型对UHPCC材料的改进性能。然后,对在冲击和爆炸载荷作用下的UHPCC结构进行的三个选定实验进行了数值模拟,并与相应的实验数据进行了比较。修改后的材料模型的数值预测在冲击力,挠度和破坏方面与实验数据非常吻合。通过用户定义的材料模型将用于UHPCC的修改后的材料模型实现为有限元代码LS-DYNA。首先进行了无限制单轴压缩,拉伸和三轴压缩的单元素测试,以证明改进的材料模型对UHPCC材料的改进性能。然后,对在冲击和爆炸载荷作用下的UHPCC结构进行的三个选定实验进行了数值模拟,并与相应的实验数据进行了比较。修改后的材料模型的数值预测在冲击力,挠度和破坏方面与实验数据非常吻合。通过用户定义的材料模型将用于UHPCC的修改后的材料模型实现为有限元代码LS-DYNA。首先进行了无限制单轴压缩,拉伸和三轴压缩的单元素测试,以证明改进的材料模型对UHPCC材料的改进性能。然后,对在冲击和爆炸载荷作用下的UHPCC结构进行的三个选定实验进行了数值模拟,并与相应的实验数据进行了比较。修改后的材料模型的数值预测在冲击力,挠度和破坏方面与实验数据非常吻合。首先进行了无限制单轴压缩,拉伸和三轴压缩的单元素测试,以证明改进的材料模型对UHPCC材料的改进性能。然后,对在冲击和爆炸载荷作用下的UHPCC结构进行的三个选定实验进行了数值模拟,并与相应的实验数据进行了比较。修改后的材料模型的数值预测在冲击力,挠度和破坏方面与实验数据非常吻合。首先进行了无限制单轴压缩,拉伸和三轴压缩的单元素测试,以证明改进的材料模型对UHPCC材料的改进性能。然后,对在冲击和爆炸载荷作用下的UHPCC结构进行的三个选定实验进行了数值模拟,并与相应的实验数据进行了比较。修改后的材料模型的数值预测在冲击力,挠度和破坏方面与实验数据非常吻合。

更新日期:2021-03-18
down
wechat
bug