当前位置: X-MOL 学术IEEE Trans. Circuits Syst. I Regul. Pap. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis and Optimization Strategies Toward Reliable and High-Speed 6T Compute SRAM
IEEE Transactions on Circuits and Systems I: Regular Papers ( IF 5.2 ) Pub Date : 2021-02-02 , DOI: 10.1109/tcsi.2021.3054972
Jian Chen , Wenfeng Zhao , Yuqi Wang , Yajun Ha

In-SRAM Computation improves the throughput and energy-efficiency of data-intensive applications by utilizing parallelism and reducing the data transfers. However, when multiple wordlines are accessed simultaneously, a short-circuit path will likely incur dynamic read disturbance and generate extra direct current in 6T Compute SRAM (CSRAM). In order to mitigate this issue, existing works either degrade the access speed, use area-hungry bitcells, or incur architecture-level overheads. In this paper, we first perform a comprehensive circuit-level analysis of the dynamic read disturbance issues of 6T SRAM for the first time and find that such disturbance can be efficiently avoided by maintaining the bitline voltage at a high level. Second, we propose a novel energy-efficient, reconfigurable sense amplifier design that is able to achieve fast and reliable sensing when the bitline voltage level is high for the compute access. Third, we propose an adaptive wordline control scheme that keeps the bitline voltage at a high level to eliminate the dynamic read disturbance and the sneaky direct current pathway. Both the new sense amplifier and adaptive wordline control are also optimized to support the normal read access efficiently. We have validated our design in a 55nm CMOS technology. Experimental results show that our design not only reliably addresses the read disturbance and the extra direct current, but also operates 19% faster than the state-of-the-art design using an advanced 28nm FDSOI technology.

中文翻译:

可靠和高速6T计算SRAM的分析和优化策略

SRAM中计算通过利用并行性并减少数据传输,提高了数据密集型应用程序的吞吐量和能效。但是,当同时访问多个字线时,短路路径可能会引起动态读取干扰,并在6T计算SRAM(CSRAM)中产生额外的直流电。为了减轻这个问题,现有的工作要么降低了访问速度,要么使用了面积大的位元单元,要么招致了体系结构级的开销。在本文中,我们首次对6T SRAM的动态读取干扰问题进行了全面的电路级分析,发现可以通过将位线电压保持在高电平来有效避免此类干扰。其次,我们提出了一种新型的节能技术,可重配置的读出放大器设计,当位线电压电平较高时,能够实现快速可靠的读出,以进行计算访问。第三,我们提出了一种自适应字线控制方案,该方案将位线电压保持在高电平,以消除动态读取干扰和暗流直流路径。新的读出放大器和自适应字线控制也都进行了优化,以有效地支持正常的读取访问。我们已经在55nm CMOS技术中验证了我们的设计。实验结果表明,我们的设计不仅可以可靠地解决读取干扰和额外的直流电流,而且比使用先进的28nm FDSOI技术的最新设计运行速度快19%。我们提出了一种自适应字线控制方案,该方案将位线电压保持在高电平,以消除动态读取干扰和暗流直流通路。新的读出放大器和自适应字线控制也都进行了优化,以有效地支持正常的读取访问。我们已经在55nm CMOS技术中验证了我们的设计。实验结果表明,我们的设计不仅可以可靠地解决读取干扰和额外的直流电流,而且比使用先进的28nm FDSOI技术的最新设计运行速度快19%。我们提出了一种自适应字线控制方案,该方案将位线电压保持在高电平,以消除动态读取干扰和暗流直流通路。新的读出放大器和自适应字线控制也都进行了优化,以有效地支持正常的读取访问。我们已经在55nm CMOS技术中验证了我们的设计。实验结果表明,我们的设计不仅可以可靠地解决读取干扰和额外的直流电流,而且比使用先进的28nm FDSOI技术的最新设计运行速度快19%。我们已经在55nm CMOS技术中验证了我们的设计。实验结果表明,我们的设计不仅可以可靠地解决读取干扰和额外的直流电流,而且比使用先进的28nm FDSOI技术的最新设计运行速度快19%。我们已经在55nm CMOS技术中验证了我们的设计。实验结果表明,我们的设计不仅可以可靠地解决读取干扰和额外的直流电流,而且比使用先进的28nm FDSOI技术的最新设计运行速度快19%。
更新日期:2021-03-09
down
wechat
bug