当前位置: X-MOL 学术Sens. Bio-Sens. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selection of metals for the optimal performance of metamaterial based hollow core fibers for terahertz applications
Sensing and Bio-Sensing Research ( IF 5.4 ) Pub Date : 2021-03-09 , DOI: 10.1016/j.sbsr.2021.100411
Yaseer Zaman Chowdhury , Md Jahirul Islam , Md Rejvi Kaysir , Jannatul Ambia Akhi

Terahertz (THz) radiation has recently gained much attention in diverse fields ranging from short-range wireless communication to biomedical applications. In general, THz radiation is much difficult to transmit through conventional waveguides due to experiencing higher transmission losses. Many waveguide-based technologies have been proposed in recent decades; among these, hollow-core fiber (HCF) is one of the best options due to the lower material absorption and dispersion. Recently, metamaterial-based HCF shows great promise to transmit THz radiation due to its unique and tunable optical properties. This work focuses on the effect of different metal wires (e.g. indium, silver, and gold) on the confinement loss (CL) of metamaterial-based HCFs. Numerical simulations are carried out from 0.24 to 1.5 THz with a 1 mm diameter core and metamaterial cladding made of subwavelength size metal wires embedded in Zeonex. The impact of the diameter, position, and number of metal wires have been thoroughly investigated. It is observed that the effect of increasing the wire diameter and the number of wires around the core have similar effects as the fraction of metal increases in the cladding layer for both the cases. However, there is an optimal position of wires embedded in a dielectric, where the loss is found to be the lowest. Thus, the metamaterial-based HCF design needs to be optimized to achieve the lowest loss at a specific spectral range. This analysis could help to select metal wires with associated parameters for designing low-loss metamaterial-based HCF in the THz region.



中文翻译:

选择金属以达到用于太赫兹应用的基于超材料的空心纤维的最佳性能

太赫兹(THz)辐射最近在从短距离无线通信到生物医学应用的各个领域中引起了广泛关注。通常,由于遭受更高的传输损耗,太赫兹辐射很难通过传统的波导传输。近几十年来,已经提出了许多基于波导的技术。其中,由于较低的材料吸收和分散,空心纤维(HCF)是最好的选择之一。最近,基于超材料的HCF由于其独特且可调节的光学特性,显示出传输THz辐射的巨大希望。这项工作着眼于不同金属线(例如铟,银和金)对基于超材料的HCF的约束损耗(CL)的影响。数值模拟从0.24到1。5 THz,芯线直径为1 mm,超材料包层由嵌入Zeonex的亚波长尺寸金属线制成。彻底研究了金属线的直径,位置和数量的影响。可以看出,在两种情况下,随着包层中金属含量的增加,增加线径和绕芯线的数量具有相似的效果。但是,在电介质中嵌入的导线有一个最佳位置,在该位置发现损耗最低。因此,需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。彻底研究了金属线的直径,位置和数量的影响。可以看出,在两种情况下,随着包层中金属含量的增加,增加线径和绕芯线的数量具有类似的效果。但是,在电介质中嵌入的导线有一个最佳位置,在该位置发现损耗最低。因此,需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。彻底研究了金属线的直径,位置和数量的影响。可以看出,在两种情况下,随着包层中金属含量的增加,增加线径和绕芯线的数量的效果具有相似的效果。但是,在电介质中嵌入的导线有一个最佳位置,在该位置发现损耗最低。因此,需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。可以看出,在两种情况下,随着包层中金属含量的增加,增加线径和绕芯线的数量具有类似的效果。但是,在电介质中嵌入的导线有一个最佳位置,在该位置发现损耗最低。因此,需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。可以看出,在两种情况下,随着包层中金属含量的增加,增加线径和绕芯线的数量具有类似的效果。但是,在电介质中嵌入的导线有一个最佳位置,在该位置发现损耗最低。因此,需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低的损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。需要优化基于超材料的HCF设计,以在特定光谱范围内实现最低的损耗。该分析可以帮助选择具有相关参数的金属线,以设计THz区域中基于低损耗超材料的HCF。

更新日期:2021-03-15
down
wechat
bug