当前位置: X-MOL 学术Solid State Ionics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electrochemical property of hierarchical flower-like α-Ni(OH)2 as an anode material for lithium-ion batteries
Solid State Ionics ( IF 3.0 ) Pub Date : 2021-03-09 , DOI: 10.1016/j.ssi.2021.115595
Jinhuan Yao , Yanwei Li , Guanlin Pan , Xiuying Jin , Kang Luo , Shangwang Le

Transition metal hydroxides (TMHs) are recently receiving increasing attention as anode materials for lithium-ion batteries (LIBs) because of their merits of high theoretical capacity, low cost, and easy preparation. Herein, hierarchical flower-like α-Ni(OH)2 is synthesized by a facile homogeneous precipitation method with Ni(NO3)2·6H2O and urea as raw materials. When evaluated as an anode material for lithium-ion batteries, the α-Ni(OH)2 delivers a high reversible capacity of 1346 mA h g−1 at a current density of 0.05 A g−1, and gives a reversible capacity of 475 mA h g−1 at a high current density of 5.0 A g−1. It maintains a reversible capacity of 1227 mA h g−1 after 30 cycles at 0.1 A g−1, with a capacity retention of 97.0% compared to the second cycle. The charge storage mechanism and kinetics of the α-Ni(OH)2 are analyzed by sweep voltammetry method and electrochemical impedance spectroscopy. The results demonstrate that the lithium ion storage process in the α-Ni(OH)2 is mainly dominated by pseudocapacitive behavior, which is responsible for the superior rate capability; the charge-transfer resistance of the α-Ni(OH)2 is sensitive to the state of charge; the apparent lithium ion diffusion coefficient of the α-Ni(OH)2 varies in the range of 10−14–10−15 cm2 s−1.



中文翻译:

分层花状α - Ni(OH)2作为锂离子电池负极材料的电化学性能

过渡金属氢氧化物(TMHs)作为锂离子电池(LIBs)的负极材料,由于其理论容量高,成本低且易于制备的优点而受到了越来越多的关注。在此,以Ni(NO 32 ·6H 2 O和尿素为原料,通过简便的均相沉淀法合成了分层的花状α - Ni(OH)2。当被评估为锂离子电池的负极材料时,α- Ni(OH)2在0.05 A g -1的电流密度下可提供1346 mA h g -1的高可逆容量,而可提供475 mA的可逆容量汞-1在5.0 A g -1的高电流密度下。在0.1 A g -1的30个循环后,它可维持1227 mA h g -1的可逆容量,与第二个循环相比,其容量保持率为97.0%。通过扫描伏安法和电化学阻抗谱分析了α- Ni(OH)2的电荷存储机理和动力学。结果表明,锂离子在α- Ni(OH)2中的存储过程主要由拟电容行为决定,这是其优异的倍率性能的原因。α- Ni(OH)2的电荷转移电阻对充电状态敏感;α- Ni(OH)2的表观锂离子扩散系数在10 -14 –10 -15  cm 2  s -1范围内变化。

更新日期:2021-03-09
down
wechat
bug