当前位置: X-MOL 学术J. Fluids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling fluid–structure interactions between cerebro-spinal fluid and the spinal cord
Journal of Fluids and Structures ( IF 3.6 ) Pub Date : 2021-03-09 , DOI: 10.1016/j.jfluidstructs.2021.103251
Giulia Cardillo , Carlo Camporeale

The spinal cord (SC) is a tissue composed of white and gray matter that is permeated by capillary blood, venular blood and cerebrospinal fluid (CSF). It is surrounded by an annular cavity, called the subarachnoid space (SAS), within which the CSF exhibits a pulsatile laminar flow. Insights into the functioning of cerebrospinal fluid are expected to reveal the pathogenesis of severe neurological diseases – such as syringomyelia – involving the formation of fluid-filled cavities (syrinxes) in the spinal cord. A fully analytical fluid–structure interaction model, based on the Multiple Network Porous Elastic Theory, is here proposed. The spinal cord is regarded as a deformable porous medium permeated by different fluids, while a pulsatile flow in the subarachnoid space is taken into account. By virtue of the slender body approximation, the mathematical model allows to analytically solve the space–time structure of the CSF flow field, the displacements in the spinal cord, and the pressures of the fluids inside the cord. The results are consistent with data reported in literature and with some numerical simulations. A sensitivity analysis shows that the deviation from the physiological values of the Young modulus, the capillary pressures at the SC–SAS interface and the permeability of blood networks can lead to a great increase in the CSF fluxes across the spinal cord. These findings bring new insights into the factors that affect CSF exchange, and they may support hypotheses which attribute syrinx formation to an abnormal exchange of cerebrospinal fluid between the SAS and the spinal cord.



中文翻译:

模拟脑脊髓液和脊髓之间的流固耦合

脊髓(SC)是由白色和灰色物质组成的组织,该组织被毛细血管血,静脉血和脑脊髓液(CSF)渗透。它被称为蛛网膜下腔(SAS)的环形腔所包围,在该腔中CSF表现出搏动性层流。对脑脊液功能的见解有望揭示出严重的神经系统疾病(如脊髓空洞症)的发病机制,其中涉及在脊髓中形成充满液体的空腔(syrinxes)。本文提出了基于多重网络多孔弹性理论的完全解析的流固耦合模型。脊髓被认为是一种可变形的多孔介质,其渗透有不同的流体,同时考虑了蛛网膜下腔中的脉动流。由于身体细长,该数学模型可以分析CSF流场的时空结构,脊髓中的位移以及绳索内部流体的压力。结果与文献报道的数据和一些数值模拟结果一致。敏感性分析表明,偏离杨氏模量的生理值,SC-SAS界面处的毛细压力和血液网络的渗透性会导致穿过脊髓的CSF通量大大增加。这些发现为影响CSF交换的因素带来了新的见解,并且它们可能支持将syrinx形成归因于SAS和脊髓之间脑脊液的异常交换的假说。脊髓的位移,以及脊髓内部液体的压力。结果与文献报道的数据和一些数值模拟结果一致。敏感性分析表明,偏离杨氏模量的生理值,SC-SAS界面处的毛细压力和血液网络的渗透性会导致穿过脊髓的CSF通量大大增加。这些发现为影响CSF交换的因素带来了新的见解,并且它们可能支持将syrinx形成归因于SAS和脊髓之间脑脊液的异常交换的假说。脊髓的位移,以及脊髓内部液体的压力。结果与文献报道的数据和一些数值模拟结果一致。敏感性分析表明,偏离杨氏模量的生理值,SC-SAS界面处的毛细压力和血液网络的渗透性会导致穿过脊髓的CSF通量大大增加。这些发现为影响CSF交换的因素带来了新的见解,并且它们可能支持将syrinx形成归因于SAS和脊髓之间脑脊液的异常交换的假说。敏感性分析表明,偏离杨氏模量的生理值,SC-SAS界面处的毛细压力和血液网络的渗透性会导致穿过脊髓的CSF通量大大增加。这些发现为影响CSF交换的因素带来了新的见解,并且它们可能支持将syrinx形成归因于SAS和脊髓之间脑脊液的异常交换的假说。敏感性分析表明,偏离杨氏模量的生理值,SC-SAS界面处的毛细压力和血液网络的渗透性会导致穿过脊髓的CSF通量大大增加。这些发现为影响CSF交换的因素带来了新的见解,并且它们可能支持将syrinx形成归因于SAS和脊髓之间脑脊液的异常交换的假说。

更新日期:2021-03-09
down
wechat
bug