当前位置: X-MOL 学术Phys. Med. Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Roadmap: proton therapy physics and biology
Physics in Medicine & Biology ( IF 3.5 ) Pub Date : 2021-03-02 , DOI: 10.1088/1361-6560/abcd16
Harald Paganetti 1, 2 , Chris Beltran 3 , Stefan Both 4 , Lei Dong 5 , Jacob Flanz 1, 2 , Keith Furutani 3 , Clemens Grassberger 1, 2 , David R Grosshans 6 , Antje-Christin Knopf 4 , Johannes A Langendijk 4 , Hakan Nystrom 7, 8 , Katia Parodi 9 , Bas W Raaymakers 10 , Christian Richter 11, 12, 13 , Gabriel O Sawakuchi 14 , Marco Schippers 15 , Simona F Shaitelman 6 , B K Kevin Teo 5 , Jan Unkelbach 16 , Patrick Wohlfahrt 1 , Tony Lomax 15
Affiliation  

The treatment of cancer with proton radiation therapy was first suggested in 1946 followed by the first treatments in the 1950s. As of 2020, almost 200 000 patients have been treated with proton beams worldwide and the number of operating proton therapy (PT) facilities will soon reach one hundred. PT has long moved from research institutions into hospital-based facilities that are increasingly being utilized with workflows similar to conventional radiation therapy. While PT has become mainstream and has established itself as a treatment option for many cancers, it is still an area of active research for various reasons: the advanced dose shaping capabilities of PT cause susceptibility to uncertainties, the high degrees of freedom in dose delivery offer room for further improvements, the limited experience and understanding of optimizing pencil beam scanning, and the biological effect difference compared to photon radiation. In addition to these challenges and opportunities currently being investigated, there is an economic aspect because PT treatments are, on average, still more expensive compared to conventional photon based treatment options. This roadmap highlights the current state and future direction in PT categorized into four different themes, ‘improving efficiency’, ‘improving planning and delivery’, ‘improving imaging’, and ‘improving patient selection’.



中文翻译:

路线图:质子治疗物理学和生物学

1946 年首次提出用质子放射疗法治疗癌症,随后在 1950 年代首次提出治疗方法。截至 2020 年,全球已有近 20 万名患者接受了质子束治疗,质子治疗 (PT) 设施的数量将很快达到一百个。PT 长期以来一直从研究机构转移到医院设施,这些设施越来越多地用于类似于传统放射治疗的工作流程。虽然 PT 已成为主流,并已成为许多癌症的治疗选择,但由于各种原因,它仍然是一个活跃的研究领域:PT 的先进剂量成形能力导致对不确定性的敏感性,剂量输送的高度自由度提供进一步改进的空间,优化笔形光束扫描的经验和理解有限,以及与光子辐射相比的生物效应差异。除了目前正在研究的这些挑战和机遇之外,还有一个经济方面,因为与传统的基于光子的治疗方案相比,平均而言,PT 治疗仍然更昂贵。该路线图突出了 PT 的当前状态和未来方向,分为四个不同的主题,“提高效率”、“改进计划和交付”、“改进成像”和“改进患者选择”。与传统的基于光子的治疗方案相比仍然更昂贵。该路线图突出了 PT 的当前状态和未来方向,分为四个不同的主题,“提高效率”、“改进计划和交付”、“改进成像”和“改进患者选择”。与传统的基于光子的治疗方案相比仍然更昂贵。该路线图突出了 PT 的当前状态和未来方向,分为四个不同的主题,“提高效率”、“改进计划和交付”、“改进成像”和“改进患者选择”。

更新日期:2021-03-02
down
wechat
bug