当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Plasmonic nanoreactors regulating selective oxidation by energetic electrons and nanoconfined thermal fields
Science Advances ( IF 11.7 ) Pub Date : 2021-03-05 , DOI: 10.1126/sciadv.abf0962
Chao Zhan 1 , Qiu-Xiang Wang 1 , Jun Yi 1 , Liang Chen 1 , De-Yin Wu 1 , Ye Wang 1 , Zhao-Xiong Xie 1 , Martin Moskovits 1, 2 , Zhong-Qun Tian 1
Affiliation  

Optimizing product selectivity and conversion efficiency are primary goals in catalysis. However, efficiency and selectivity are often mutually antagonistic, so that high selectivity is accompanied by low efficiency and vice versa. Also, just increasing the temperature is very unlikely to change the reaction pathway. Here, by constructing hierarchical plasmonic nanoreactors, we show that nanoconfined thermal fields and energetic electrons, a combination of attributes that coexist almost uniquely in plasmonic nanostructures, can overcome the antagonism by regulating selectivity and promoting conversion rate concurrently. For propylene partial oxidation, they drive chemical reactions by not only regulating parallel reaction pathways to selectively produce acrolein but also reducing consecutive process to inhibit the overoxidation to CO2, resulting in valuable products different from thermal catalysis. This suggests a strategy to rationally use plasmonic nanostructures to optimize chemical processes, thereby achieving high yield with high selectivity at lower temperature under visible light illumination.



中文翻译:

等离子纳米反应器通过高能电子和纳米约束热场调节选择性氧化

优化产物的选择性和转化效率是催化的主要目标。但是,效率和选择性通常是相互对立的,因此高选择性伴随着低效率,反之亦然。同样,仅提高温度几乎不可能改变反应途径。在这里,通过构建分层的等离激元纳米反应器,我们表明,纳米约束的热场和高能电子是在等离激元纳米结构中几乎唯一共存的属性的组合,可以通过调节选择性和同时提高转化率来克服拮抗作用。对于丙烯部分氧化,它们不仅通过调节平行的反应路径来选择性地生成丙烯醛,而且还通过减少连续的过程来抑制化学物质向CO的过度氧化,从而驱动化学反应。2,产生不同于热催化的有价值的产物。这表明了合理使用等离激元纳米结构来优化化学过程的策略,从而在可见光照射下在较低温度下以高选择性实现了高收率。

更新日期:2021-03-07
down
wechat
bug