当前位置: X-MOL 学术Eur. J. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
On the behavior of a water electrolysis cell in a DC circuit
European Journal of Physics ( IF 0.6 ) Pub Date : 2021-03-02 , DOI: 10.1088/1361-6404/abd25b
Douglas Hutchison

The electrolysis of water using a DC circuit is a familiar physical science experiment and the empirical details of the process, especially in terms of the chemistry, are well known. There are however, long-standing questions in regard to the specific role played by the circuit itself and the electrolyte. Recent empirical studies of an electrolysis cell as a circuit element have revealed what we see as clues towards understanding the cell’s behavior electrodynamically (Shen M etal 2011 Int. J. Hydrog. Energy 36 14335; Sun C-W and Hsiau S-S 2018 J. Electrochem. Sci. Technol. 9 99). For example, the cell is observed to be non-conductive below a threshold in the difference of potential, and once it becomes conductive the current is proportional to the difference between the applied voltage and the threshold, not the applied voltage. This type of non-Ohmic behavior guides our modeling of the cell in two steps. The first is the analysis of an equivalent circuit that captures the observed behavior. The second is an examination of the charge distributions within the double layers near the electrodes that polarize the cell. This polarization renders the cell non-conductive below the threshold, and its lingering effects explain the overall non-Ohmic behavior once conduction is possible. In addition, the energy transfer process required to power the cell, we find, is suggestive of non-classical (i.e. quantum mechanical) mechanisms.



中文翻译:

关于直流回路中水电解槽的行为

使用DC电路电解水是一个熟悉的物理科学实验,并且该过程的经验细节(尤其是化学方面的细节)是众所周知的。然而,关于电路本身和电解质所起的特定作用,存在长期存在的问题。对电解槽作为电路元件的最新经验研究揭示了我们认为是从电动力学角度了解电解槽行为的线索(Shen M etal 2011 Int.J.Hydrog.Energy 36 14335; Sun CW和Hsiau SS 2018 J.Electrochem.Sci 。技术 999)。例如,观察到电池在电势差的阈值以下是不导电的,并且一旦电池变为导电,电流就与施加的电压和阈值之间的差成比例,而不是与施加的电压成比例。这种非欧姆行为可以分两步指导我们对细胞进行建模。首先是对捕获观察到的行为的等效电路的分析。第二个是检查使细胞极化的电极附近的双层内的电荷分布。这种极化使电池在阈值以下不导电,并且其挥之不去的作用解释了一旦可能导电,整体的非欧姆行为。另外,我们发现,为电池供电所需的能量转移过程暗示着非经典的(即

更新日期:2021-03-02
down
wechat
bug