当前位置: X-MOL 学术Proc. Inst. Civ. Eng. Struct. Build. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Experimental study of seismic in-plane elliptical damper with empirical design formulae
Proceedings of the Institution of Civil Engineers - Structures and Buildings ( IF 1.2 ) Pub Date : 2021-01-04 , DOI: 10.1680/jstbu.19.00077
Chien-Liang Lee, Yung-Tsang Chen, Meng-Yan Cai, Yen-Po Wang

A seismic steel damper designed to deform inelastically in an in-plane flexural bending mode for more efficient utilisation of the material was investigated. This proposed device, referred to as an in-plane elliptical damper (i-PED), consists of two circular arches with intermediate straight arms connected in a closed form to eliminate end rotation at the symmetric axis in order to enhance the ultimate capacity. Test results obtained from a series of component tests on i-PEDs with various dimensions indicated that the energy-dissipation capacities of the dampers under cyclic loads were rich and consistently stable. The i-PED with a shorter arm length and smaller radius of curvature of arch exhibited higher strength and energy-dissipation capacity. Empirical formulae for estimating the mechanical properties of the dampers were developed for preliminary design purposes. The numerical predictions were found to correlate well with the experimental results, demonstrating that using the Bouc–Wen model is sufficient for simulating the inelastic mechanical behaviour of steel dampers. Furthermore, shaking table tests of a five-storey modal frame implemented with i-PEDs were conducted, with non-linear time history analyses carried out for comparison. Encouraging results on seismic response control with good numerical prediction were obtained, suggesting the feasibility of the proposed damper and design scheme for practical application.

中文翻译:

基于经验设计公式的抗震面内椭圆阻尼器的试验研究

研究了一种设计为在平面内弯曲弯曲模式下非弹性变形的抗震钢阻尼器,以更有效地利用材料。这种被提议的装置称为面内椭圆阻尼器 (i-PED),由两个圆拱组成,中间直臂以闭合形式连接,以消除对称轴处的端部旋转,以提高极限容量。对不同尺寸的 i-PED 进行一系列组件测试获得的测试结果表明,阻尼器在循环载荷下的能量耗散能力丰富且始终稳定。臂长较短、曲率半径较小的 i-PED 具有较高的强度和能量耗散能力。用于估计阻尼器机械性能的经验公式是为初步设计目的而开发的。发现数值预测与实验结果有很好的相关性,表明使用 Bouc-Wen 模型足以模拟钢阻尼器的非弹性力学行为。此外,还进行了使用 i-PED 实现的五层模态框架的振动台测试,并进行了非线性时程分析以进行比较。在地震响应控制方面取得了令人鼓舞的结果,并具有良好的数值预测,表明所提出的阻尼器和设计方案在实际应用中是可行的。证明使用 Bouc-Wen 模型足以模拟钢阻尼器的非弹性力学行为。此外,还进行了使用 i-PED 实现的五层模态框架的振动台测试,并进行了非线性时程分析以进行比较。在地震响应控制方面取得了令人鼓舞的结果,并具有良好的数值预测,表明所提出的阻尼器和设计方案在实际应用中是可行的。证明使用 Bouc-Wen 模型足以模拟钢阻尼器的非弹性力学行为。此外,还进行了使用 i-PED 实现的五层模态框架的振动台测试,并进行了非线性时程分析以进行比较。在地震响应控制方面取得了令人鼓舞的结果,并具有良好的数值预测,表明所提出的阻尼器和设计方案在实际应用中是可行的。
更新日期:2021-01-04
down
wechat
bug