当前位置: X-MOL 学术J. Enhanc. Heat Transf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical Simulations of Flow Structure and Turbulent Heat Transfer in a Square Ribbed Channel with Varying Rib Pitch Ratio
Journal of Enhanced Heat Transfer ( IF 1.5 ) Pub Date : 2016-01-01 , DOI: 10.1615/jenhheattransf.2017018645
Aayan Khalid , Gongnan Xie , Bengt Sunden

In the fast development of advanced gas turbines with increasing output power, the inlet temperature is accordingly increased. Traditional cooling techniques failed to deal with such situations; however, new cooling techniques incorporating ribbed microchannels with higher capability of heat removal are required. In the present research, a square ribbed channel with various rib pitch ratios is designed to regulate the most optimum configuration for augmenting heat transfer rates to diminish pressure drop consequences. The inlet Reynolds number used for the microchannels varies from 20,000 to 160,000. Four different configurations of six continuous ribs are mounted on one wall by varying height and distance between the ribs. By using computational fluid dynamics with the v2f turbulence model and a constant wall heat flux as the boundary condition on the surfaces, temperature field, local heat transfer, normalized heat transfer, and thermal performance are acquired. The overall performances of four tested ribbed microchannels are evaluated and compared. Numerical results predict that the use of increasing rib pitch ratio in the same channel (case 3) is an appropriate design for enhancing heat transfer and reducing pressure loss. Although it has a lower friction factor compared to other cases, it gives the best performance of heat transfer enhancement. It is suggested that the ribbed microchannels with varying rib pitch ratio can increase the overall heat transfer performance. (Less)

中文翻译:

变肋间距比方肋通道中流动结构和湍流传热的数值模拟

随着先进燃气轮机的快速发展,随着输出功率的增加,进口温度也相应提高。传统的冷却技术无法应对这种情况;然而,需要新的冷却技术,结合具有更高散热能力的肋状微通道。在目前的研究中,设计了具有各种肋节距比的方形肋状通道,以调节最佳配置,以提高传热率以减少压降后果。用于微通道的入口雷诺数从 20,000 到 160,000 不等。通过改变肋之间的高度和距离,六个连续肋的四种不同配置安装在一面墙上。通过使用具有 v2f 湍流模型和恒定壁面热通量作为表面边界条件的计算流体动力学,可以获得温度场、局部传热、归一化传热和热性能。评估和比较了四个测试的肋状微通道的整体性能。数值结果预测,在同一通道中使用增加的肋节距比(案例 3)是增强传热和减少压力损失的合适设计。虽然与其他情况相比,它具有较低的摩擦系数,但它提供了最佳的传热增强性能。这表明具有不同肋节距比的肋状微通道可以提高整体传热性能。(较少的)和热性能。评估和比较了四个测试的带肋微通道的整体性能。数值结果预测,在同一通道中使用增加的肋节距比(案例 3)是增强传热和减少压力损失的合适设计。虽然与其他情况相比,它具有较低的摩擦系数,但它提供了最佳的传热增强性能。这表明具有不同肋节距比的肋状微通道可以提高整体传热性能。(较少的)和热性能。评估和比较了四个测试的肋状微通道的整体性能。数值结果预测,在同一通道中使用增加的肋节距比(案例 3)是增强传热和减少压力损失的合适设计。虽然与其他情况相比,它具有较低的摩擦系数,但它提供了最佳的传热增强性能。这表明具有不同肋节距比的肋状微通道可以提高整体传热性能。(较少的)数值结果预测,在同一通道中使用增加的肋节距比(案例 3)是增强传热和减少压力损失的合适设计。虽然与其他情况相比,它具有较低的摩擦系数,但它提供了最佳的传热增强性能。这表明具有不同肋节距比的肋状微通道可以提高整体传热性能。(较少的)数值结果预测,在同一通道中使用增加的肋节距比(案例 3)是增强传热和减少压力损失的合适设计。虽然与其他情况相比,它具有较低的摩擦系数,但它提供了最佳的传热增强性能。这表明具有不同肋节距比的肋状微通道可以提高整体传热性能。(较少的)
更新日期:2016-01-01
down
wechat
bug