当前位置: X-MOL 学术IEEE Trans. Terahertz Sci. Tech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
InP-Based THz Beam Steering Leaky-Wave Antenna
IEEE Transactions on Terahertz Science and Technology ( IF 3.9 ) Pub Date : 2020-11-19 , DOI: 10.1109/tthz.2020.3039460
Peng Lu , Thomas Haddad , Benedikt Sievert , Besher Khani , Sumer Makhlouf , Sebastian Dulme , Jose Fernandez Estevez , Andreas Rennings , Daniel Erni , Ullrich Pfeiffer , Andreas Stohr

For mobile THz applications, integrated beam steering THz transmitters are essential. Beam steering approaches using leaky-wave antennas (LWAs) are attractive in that regard since they do not require complex feeding control circuits and beam steering is simply accomplished by sweeping the operating frequency. To date, only a few THz LWAs have been reported. These LWAs are based on polymer or graphene substrates and thus, it is quite impossible to monolithically integrate these antennas with state-of-the-art indium phosphide (InP)-based photonic or electronic THz sources and receivers. Therefore, in this article, we report on an InP-based THz LWA for the first time. The developed and fabricated THz LWA consists of a periodic leaking microstrip line integrated with a grounded coplanar waveguide to microstrip line (GCPW-MSL) transition for future integration with InP-based photodiodes. For fabrication, a substrate-transfer process using silicon as carrier substrate for a 50-μm thin InP THz antenna chip has been established. By changing the operating frequency from 230 to 330 GHz, the fabricated antenna allows to sweep the beam direction quasi-linearly from −46° to 42°, i.e., the total scanning angle is 88°. The measured average realized gain and 3-dB beam width of a 1.5-mm wide InP LWA are ∼11 dBi and 10°. This article furthermore discusses the use of the fabricated LWA for THz interconnects.

中文翻译:

基于InP的THz波束控制漏泄天线

对于移动THz应用,集成的波束控制THz发射器是必不可少的。在这方面,使用漏波天线(LWA)的波束控制方法很有吸引力,因为它们不需要复杂的馈电控制电路,并且只需扫频工作频率即可完成波束控制。迄今为止,仅报道了几个太赫兹LWA。这些LWA基于聚合物或石墨烯基底,因此,完全不可能将这些天线与基于最新的磷化铟(InP)的光子或电子THz源和接收器进行单片集成。因此,在本文中,我们首次报告了基于InP的THz LWA。研制和制造的太赫兹LWA由周期性泄漏的微带线和接地共面波导到微带线(GCPW-MSL)的过渡组成,以便将来与基于InP的光电二极管集成。为了制造,已经建立了使用硅作为50μm薄InP THz天线芯片的载体衬底的衬底转移工艺。通过将工作频率从230 GHz更改为330 GHz,所制造的天线允许将射束方向从-46°准线性扫掠至42°,即总扫描角度为88°。测得的1.5 mm宽InP LWA的平均实现增益和3 dB波束宽度约为11 dBi和10°。本文还讨论了制造的LWA在THz互连中的使用。已经建立了使用硅作为50μm薄InP THz天线芯片的载体衬底的衬底转移工艺。通过将工作频率从230 GHz更改为330 GHz,所制造的天线允许将波束方向从-46°准线性地扫描到42°,即总扫描角度为88°。测得的1.5 mm宽InP LWA的平均实现增益和3 dB波束宽度约为11 dBi和10°。本文还讨论了制造的LWA在THz互连中的使用。已经建立了使用硅作为50μm薄InP THz天线芯片的载体衬底的衬底转移工艺。通过将工作频率从230 GHz更改为330 GHz,所制造的天线允许将射束方向从-46°准线性扫掠至42°,即总扫描角度为88°。测得的1.5 mm宽InP LWA的平均实现增益和3 dB波束宽度约为11 dBi和10°。本文还讨论了制造的LWA在THz互连中的使用。
更新日期:2020-11-19
down
wechat
bug