当前位置: X-MOL 学术IEEE Sens. J. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiplexed Silicon Nanowire Tunnel FET-Based Biosensors With Optimized Multi-Sensing Currents
IEEE Sensors Journal ( IF 4.3 ) Pub Date : 2021-01-25 , DOI: 10.1109/jsen.2021.3054052
Sihyun Kim , Ryoongbin Lee , Daewoong Kwon , Tae-Hyeon Kim , Tae Jung Park , Sung-Jin Choi , Hyun-Sun Mo , Dae Hwan Kim , Byung-Gook Park

In this study, silicon nanowire (SiNW) FET-based and SiNW tunnel FET (TFET)-based biosensors are co-integrated with CMOS circuits by using top-down approached and CMOS-compatible back-end process simultaneously. The possibility of multiplexed sensing is verified with the fabricated FET and TFET biosensors. For multiplexed-sensing, two separate sensing materials which react with two distinct bio-targets are formed by partially capping the gold on SiO2 film through a lift-off process. Then two bio-receptors which selectively combine to the gold and the SiO2 are deposited. After the reaction of each biomolecule to each receptor, the changes of saturation and gate-induced-drain-leakage (GIDL) currents are monitored in the FET sensor. It is experimentally confirmed that two different biomolecules are independently detectable by the changes of the saturation and the GIDL currents in the FET sensor. To solve the dependence of the gold formation position on the sensitivity as well as the large current difference between the saturation and the GIDL currents, we demonstrated the TFET biosensor which uses the changes of tunneling and ambipolar currents generated in the source and the drain end. As a result, it is clearly revealed that two different biomolecules can be detected without interference, regardless of the position of the gold layer by the changes of the tunneling and the ambipolar currents with almost equivalent sensing current level.

中文翻译:

基于多硅纳米线隧道FET的生物传感器,具有优化的多感测电流

在这项研究中,基于硅纳米线(SiNW)FET和基于SiNW隧道FET(TFET)的生物传感器通过同时使用自上而下的方法和与CMOS兼容的后端工艺与CMOS电路共集成。使用制造的FET和TFET生物传感器验证了多重感测的可能性。对于多重感测,通过剥离工艺将金部分覆盖在SiO2膜上,从而形成了与两种不同的生物靶标反应的两种独立的传感材料。然后沉积选择性地结合到金和SiO 2上的两个生物受体。在每个生物分子与每个受体发生反应之后,在FET传感器中监视饱和电流和栅极感应的漏极泄漏(GIDL)电流的变化。实验证明,通过FET传感器中饱和度和GIDL电流的变化,可以独立地检测到两种不同的生物分子。为了解决金形成位置对灵敏度以及饱和电流和GIDL电流之间的大电流差的依赖性,我们演示了TFET生物传感器,该传感器利用了在源极和漏极端产生的隧穿和双极性电流的变化。结果,清楚地表明,通过隧道效应和双极性电流的变化,在几乎相等的感测电流水平下,无论金层的位置如何,都可以检测到两种不同的生物分子而不会受到干扰。为了解决金形成位置对灵敏度以及饱和电流和GIDL电流之间的大电流差的依赖性,我们演示了TFET生物传感器,该传感器利用了在源极和漏极端产生的隧穿和双极性电流的变化。结果,清楚地表明,通过隧道效应和双极性电流的变化,在几乎相等的感测电流水平下,无论金层的位置如何,都可以检测到两种不同的生物分子而不会受到干扰。为了解决金形成位置对灵敏度以及饱和电流和GIDL电流之间的大电流差的依赖性,我们演示了TFET生物传感器,该传感器利用了在源极和漏极端产生的隧穿和双极性电流的变化。结果,清楚地表明,通过隧道效应和双极性电流的变化,在几乎相等的感测电流水平下,无论金层的位置如何,都可以检测到两种不同的生物分子而不会受到干扰。
更新日期:2021-03-05
down
wechat
bug