当前位置: X-MOL 学术Langmuir › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Rate Performance Modification of a Lithium-Rich Manganese-Based Material through Surface Self-Doping and Coating Strategies
Langmuir ( IF 3.7 ) Pub Date : 2021-03-04 , DOI: 10.1021/acs.langmuir.1c00225
Wanyun Li 1, 2 , Bangchuan Zhao 1 , Jin Bai 1 , Hongyang Ma 1, 2 , Kunzhen Li 1, 2 , Peiyao Wang 1, 2 , Yunjie Mao 1, 2 , Xuebin Zhu 1 , Yuping Sun 1, 3
Affiliation  

Lithium-rich manganese-based materials are currently considered to be highly promising cathode materials for next-generation lithium-ion batteries due to their high specific capacity (>250 mA h g–1) and low cost. A key challenge for the commercialization of these lithium-rich manganese-based materials is their poor rate performance, which is caused by the low electronic conductivity and increasing interface charge transfer resistance produced by the side reaction during the cycling procedure. In this work, we try to improve the rate performance of a lithium-rich manganese-based material Li1.2Mn0.54Co0.13Ni0.13O2 using a collaborative approach with Co-doping and NaxCoO2-coating methods. Cobalt doping can improve the electronic conductivity, and NaxCoO2 coating provides a convenient lithium-ion diffusion channel and moderately alleviates the inevitable decrease in cycling stability caused by cobalt doping. Under the synergistic effect of these two modification strategies, the surface and internal dynamics of the Li1.2Mn0.54Co0.13Ni0.13O2 material are enhanced and its rate performance is considerably improved without decay of the cycle stability.

中文翻译:

通过表面自掺杂和涂层策略对富锂锰基材料进行速率性能改性

富锂锰基材料由于其高比容量(> 250 mA hg –1)和低成本而被认为是下一代锂离子电池极有希望的正极材料。这些富含锂的锰基材料商业化的关键挑战是其差的速率性能,这是由于循环过程中副反应产生的低电子电导率和增加的界面电荷转移阻力所致。在这项工作中,我们尝试通过与Co掺杂和Na x的协同方法来改善富锂锰基材料Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2的速率性能。CoO 2涂覆方法。钴掺杂可以改善电子导电性,并且Na x CoO 2涂层提供了方便的锂离子扩散通道,并适度缓解了因钴掺杂而导致的循环稳定性不可避免的下降。在这两种修饰策略的协同作用下,Li 1.2 Mn 0.54 Co 0.13 Ni 0.13 O 2材料的表面和内部动力学得到增强,并且其速率性能得到显着改善,而不会降低循环稳定性。
更新日期:2021-03-16
down
wechat
bug