当前位置: X-MOL 学术Adv. Civ. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of the Development Characteristics and Influencing Factors of Freezing Temperature Field in the Cross Passage
Advances in Civil Engineering ( IF 1.5 ) Pub Date : 2021-03-05 , DOI: 10.1155/2021/6645139
Yan Zhuang 1 , Junhao Chen 1, 2 , Jian Zhang 1 , Jianlin Wang 1 , Han Li 1
Affiliation  

Based on the analysis of the temperature measurement data of the Shanghai Metro Line 15 cross passage freezing project, it was found that the gray silt layer of cross passage No. 2 outperforms that of cross passage No. 1 on the freezing effect, which is mainly attributed to the large loss of cooling capacity in the latter passage. Within the same stratum, the soil temperature at the duct piece is higher than that of the deep soil. When the soil freezes for 45 days, the temperatures of the sandy silt and gray silt layers of the same cross passage drop to −8.25°C and −6.91°C, respectively, indicating that the freezing effect of the sandy silt layer is better than that of the gray silt layer. Moreover, simulations were performed for deviation freezing pipes, nondeviation freezing pipes, and different freezing pipe diameters in the cross passage No. 1, respectively. It was found that the maximum difference of the closure completion time between the deviation and nondeviation freezing pipes is 6 days. Furthermore, for deviation freezing pipes and nondeviation freezing pipes at the center of the cross passage, the minimum difference in the freezing wall thickness reduces from 0.45 mm after 20 days of freezing to 0.06 mm after 45 days of freezing, indicating that the difference in the freezing wall thickness gradually weakens as freezing develops gradually. The deviation freezing pipe increases the spacing of freezing pipes in the deep soil. As the pipe spacing increases, the influence of the pipe diameter on the closure completion time of the freezing wall decreases.

中文翻译:

交叉通道冻结温度场的发展特征及影响因素分析

通过对上海地铁15号线交叉通道冻结工程的测温数据分析,发现2号交叉通道的灰色淤泥层在冻结效果方面优于1号交叉通道。归因于后者通道中冷却能力的巨大损失。在同一地层​​内,导管处的土壤温度高于深层土壤的温度。当土壤冻结45天时,同一穿越通道的沙质粉砂层和灰质粉砂层的温度分别降至-8.25°C和-6.91°C,这表明沙质粉砂层的冷冻效果优于灰色淤泥层。此外,对交叉通道1中的偏差冷冻管,非偏差冷冻管和不同的冷冻管直径进行了模拟。分别。发现偏差和非偏差冷冻管之间的关闭完成时间的最大差为6天。此外,对于交叉通道中心处的偏差冷冻管和非偏差冷冻管,冷冻壁厚的最小差异从冻结20天后的0.45 mm减小到冻结45天后的0.06 mm,这表明随着冻结的逐渐发展,冻结壁的厚度逐渐减弱。偏差冷冻管增加了深层土壤中冷冻管的间距。随着管间距的增加,管直径对冷冻壁的关闭完成时间的影响减小。发现偏差和非偏差冷冻管之间的关闭完成时间的最大差为6天。此外,对于交叉通道中心处的偏差冷冻管和非偏差冷冻管,冷冻壁厚的最小差异从冻结20天后的0.45 mm减小到冻结45天后的0.06 mm,这表明随着冻结的逐渐发展,冻结壁的厚度逐渐减弱。偏差冷冻管增加了深层土壤中冷冻管的间距。随着管间距的增加,管直径对冷冻壁的关闭完成时间的影响减小。发现偏差和非偏差冷冻管之间的关闭完成时间的最大差为6天。此外,对于交叉通道中心处的偏差冷冻管和非偏差冷冻管,冷冻壁厚的最小差异从冻结20天后的0.45 mm减小到冻结45天后的0.06 mm,这表明随着冻结的逐渐发展,冻结壁的厚度逐渐减弱。偏差冷冻管增加了深层土壤中冷冻管的间距。随着管间距的增加,管直径对冷冻壁的关闭完成时间的影响减小。冷冻壁厚的最小差从冷冻20天后的0.45mm减小到冷冻45天后的0.06mm,这表明随着冷冻的逐渐发展,冷冻壁厚的差逐渐变弱。偏差冷冻管增加了深层土壤中冷冻管的间距。随着管间距的增加,管直径对冷冻壁的关闭完成时间的影响减小。冷冻壁厚的最小差从冷冻20天后的0.45mm减小到冷冻45天后的0.06mm,这表明随着冷冻的逐渐发展,冷冻壁厚的差逐渐变弱。偏差冷冻管增加了深层土壤中冷冻管的间距。随着管间距的增加,管直径对冷冻壁的关闭完成时间的影响减小。
更新日期:2021-03-05
down
wechat
bug