当前位置: X-MOL 学术ACS Photonics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiplasmons-Pumped Excited-State Absorption and Energy Transfer Upconversion of Rare-Earth-Doped Luminescence beyond the Diffraction Limit
ACS Photonics ( IF 6.5 ) Pub Date : 2021-03-04 , DOI: 10.1021/acsphotonics.0c01747
Huan Chen 1 , Meijuan Sun 1 , Jie Ma 1 , Baobao Zhang 1 , Chi Wang 1 , Lei Guo 1 , Tao Ding 2 , Zhenglong Zhang 1 , Hairong Zheng 1 , Hongxing Xu 2
Affiliation  

Rare-earth-doped upconversion luminescence has attracted extensive attention due to its narrow-band and wide-range emission spectra, which cover biological and optical communication windows. For direct laser excitation, the photoluminescence of upconversion nanoparticles is inevitably involved in the excitation laser signals to luminescence, limiting its application due to high background noise, heating, and the low quantum yield of rare-earth-doped upconversion photoluminescence. Here, multiplasmons-excited upconversion luminescence was investigated by employing propagating surface plasmons polaritons on a monocrystalline silver microplate: pure plasmon near-field excitation without background photoluminescence. Due to near-field excitation, multisurface plasmons upconversion luminescence exhibit strong excited-state absorption and energy transfer upconversion, and more than 97-fold luminescence enhancement was obtained without background noise. It was found that multiplasmons-excited luminescence can be easily controlled by surface plasmons polaritons propagation and excitation modes and laser polarization directions, and a super-resolution luminescence of upconversion nanoparticles was achieved beyond the diffraction limit. The characterization of multiplasmon-excited luminescence helps not only enhance the understanding of light–matter interactions between rare-earth ions and plasmons in the near-field, but also benefits the development of bioimaging and the super-resolution of micro light sources.

中文翻译:

超越掺杂极限的稀土掺杂发光的多等离子体激元激发态吸收和能量转移上转换

稀土掺杂的上转换发光由于其窄带和宽范围的发射光谱而引起了广泛的关注,其覆盖了生物和光学通信窗口。对于直接激光激发,上转换纳米粒子的光致发光不可避免地参与激发激光信号的发光,由于高背景噪声,加热以及稀土掺杂的上转换光致发光的量子产率低,限制了其应用。在这里,通过在单晶银微板上使用传播的表面等离激元极化子来研究多等离激元激发的上转换发光:无背景光致发光的纯等离激元近场激发。由于近场激发,多表面等离子体激元上转换发光表现出强的激发态吸收和能量转移上转换,并且在没有背景噪声的情况下获得了超过97倍的发光增强。发现通过表面等离激元极化子的传播和激发模式以及激光偏振方向可以容易地控制多等离激元激发的发光,并且上转换纳米粒子的超分辨率发光超出了衍射极限。多等离激元激发发光的表征不仅有助于加深对近场中稀土离子与等离激元之间光-质相互作用的理解,而且有利于生物成像的发展和微光源的超分辨率。且在没有背景噪声的情况下获得了超过97倍的发光增强。发现通过表面等离激元极化子的传播和激发模式以及激光偏振方向可以容易地控制多等离激元激发的发光,并且上转换纳米粒子的超分辨率发光超出了衍射极限。多等离激元激发发光的表征不仅有助于加深对近场中稀土离子与等离激元之间光-质相互作用的理解,而且有利于生物成像的发展和微光源的超分辨率。且在没有背景噪声的情况下获得了超过97倍的发光增强。发现通过表面等离激元极化子的传播和激发模式以及激光偏振方向可以容易地控制多等离激元激发的发光,并且上转换纳米粒子的超分辨率发光超出了衍射极限。多等离激元激发发光的表征不仅有助于加深对近场中稀土离子与等离激元之间光-质相互作用的理解,而且有利于生物成像的发展和微光源的超分辨率。并在衍射极限之外实现了上转换纳米粒子的超分辨率发光。多等离激元激发发光的表征不仅有助于加深对近场中稀土离子与等离激元之间光-质相互作用的理解,而且有利于生物成像的发展和微光源的超分辨率。并在衍射极限之外实现了上转换纳米粒子的超分辨率发光。多等离激元激发发光的表征不仅有助于加深对稀土离子和等离激元在近场之间光-质相互作用的理解,而且有利于生物成像的发展和微光源的超分辨率。
更新日期:2021-03-04
down
wechat
bug