当前位置: X-MOL 学术J. Vac. Sci. Technol. A › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Determination of recombination coefficients for hydrogen, oxygen, and nitrogen gasses viain situradical probe system
Journal of Vacuum Science & Technology A ( IF 2.9 ) Pub Date : 2021-03-03 , DOI: 10.1116/6.0000787
Dren Qerimi 1 , Gianluca Panici 1 , Arihant Jain 1 , Daniel Jacobson 1 , David N. Ruzic 1
Affiliation  

The determination of the recombination coefficients of gases on solid surfaces depends on the plasma processing environment including factors such as temperature, surface morphology, impurities, and chamber geometry that play a role in energy transfer mechanisms of association, dissociation, and collisional nature of gases in low pressure plasmas. To determine those recombination coefficients, a zero-dimensional plasma model was created to predict radical and ion densities of hydrogen, oxygen, and nitrogen using experimental data, with electron temperatures and densities as inputs. The model inputs (electron density, electron temperature, and plasma gas temperature) were experimentally obtained by a Langmuir probe and a thermocouple. Each radical density measurement requires two radical probes with different catalytic coatings, which yield different temperatures due to different recombination coefficients of the coatings. The measurements are compared with the radical density obtained from a plasma model in order to determine the value of recombination coefficient. Recombination coefficient of hydrogen radicals on the gold surface is found to be 0.115 ± 0.018. Recombination coefficients of oxygen and nitrogen on copper are found to be 0.31 ± 0.063 and 0.18 ± 0.034, respectively. Ion densities vary from 109 to 1011 cm−3 s, over 10–100 mTorr pressure range and power range between 300 and 900 W. Radical densities are in the order of 1013 cm−3 to 1015 cm−3. Simultaneously with this article, a parallel study is published explaining in situ measurements of the radical probe system for single and mixed gases.

中文翻译:

通过西地表探针系统确定氢气,氧气和氮气的复合系数

气体在固体表面的复合系数的确定取决于等离子体处理环境,包括温度,表面形态,杂质和腔室几何形状等因素,这些因素在气体的缔合,离解和碰撞性质的能量传递机制中起作用。低压等离子体。为了确定这些复合系数,创建了一个零维等离子体模型,使用实验数据(以电子温度和密度作为输入)来预测氢,氧和氮的自由基和离子密度。模型输入(电子密度,电子温度和等离子气体温度)是通过Langmuir探针和热电偶实验获得的。每次自由基密度测量都需要两个带有不同催化涂层的自由基探针,由于涂层的复合系数不同,它们产生的温度也不同。将测量结果与从等离子体模型获得的自由基密度进行比较,以确定重组系数的值。发现金表面上的氢自由基的重组系数为0.115±0.018。发现氧和氮在铜上的重组系数分别为0.31±0.063和0.18±0.034。离子密度从10不等 发现氧和氮在铜上的重组系数分别为0.31±0.063和0.18±0.034。离子密度从10不等 发现氧和氮在铜上的重组系数分别为0.31±0.063和0.18±0.034。离子密度从10不等在10-100 mTorr的压力范围和300至900 W的功率范围内为9至10 11  cm -3  s。径向密度为10 13  cm -3至10 15  cm -3。与本文同时发布的是一项并行研究,解释对单一气体和混合气体的自由基探针系统的原位测量。
更新日期:2021-03-05
down
wechat
bug