当前位置: X-MOL 学术J. Power Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis and study of compact inductive power transfer systems for EV charging
Journal of Power Electronics ( IF 1.3 ) Pub Date : 2021-03-05 , DOI: 10.1007/s43236-021-00226-8
Yongle Ai , Xiaoqi Hu , Xing Li , Xin Zhang

The double-sided LCC topology provides an efficient compensation method for electric vehicle (EV) wireless charging systems. However, the existence of two compensation coils results in an electric vehicle wireless charging device with a large volume, high power consumption, and low efficiency. To solve these problems, this paper proposes a wireless charging structure in which the compensation coils are separately integrated into the transmitting and receiving coils. First, the number of turns of the transmitting coil is optimized to maximize the coupling coefficient of the transmitting coil. Secondly, to minimize the redundant coupling effect, the relative placement of the compensation coils is studied. Based on the proposed coil integration method, it is possible to ignore the redundant coupling between the compensation coils and the transmitting and receiving coils. Then, the Ansys Maxwell and Ansys Twin Builder are used to build a joint simulation circuit to construct the proposed wireless charging system. Simulation and experimental results show that the system output power is 3.09 kW with a gap of 150 mm, and that the transmission efficiency is 95.49%. In addition, the integrated solution has a high transmission efficiency in the presence of front-to-back misalignment and vertical misalignment of electric vehicles.



中文翻译:

用于电动汽车充电的紧凑型感应电力传输系统的分析和研究

双面LCC拓扑为电动汽车(EV)无线充电系统提供了一种有效的补偿方法。然而,两个补偿线圈的存在导致电动汽车无线充电装置体积大,功耗高且效率低。为了解决这些问题,本文提出了一种无线充电结构,其中补偿线圈分别集成在发射和接收线圈中。首先,优化发射线圈的匝数以最大化发射线圈的耦合系数。其次,为了最小化冗余耦合效应,研究了补偿线圈的相对位置。根据提出的线圈积分方法,可以忽略补偿线圈与发射和接收线圈之间的冗余耦合。然后,使用Ansys Maxwell和Ansys Twin Builder建立一个联合仿真电路,以构建所提出的无线充电系统。仿真和实验结果表明,系统输出功率为3.09 kW,间隙为150 mm,传输效率为95.49%。另外,在存在电动车辆的前后错位和垂直错位的情况下,该集成解决方案具有较高的传输效率。传输效率为95.49%。另外,在存在电动车辆的前后错位和垂直错位的情况下,该集成解决方案具有较高的传输效率。传输效率为95.49%。另外,在存在电动车辆的前后错位和垂直错位的情况下,该集成解决方案具有较高的传输效率。

更新日期:2021-03-05
down
wechat
bug