当前位置: X-MOL 学术Sci. Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mantis shrimp–inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging
Science Advances ( IF 11.7 ) Pub Date : 2021-03-03 , DOI: 10.1126/sciadv.abe3196
Ali Altaqui 1 , Pratik Sen 2 , Harry Schrickx 2 , Jeromy Rech 3 , Jin-Woo Lee 4 , Michael Escuti 1 , Wei You 3 , Bumjoon J Kim 4 , Robert Kolbas 1 , Brendan T O'Connor 2 , Michael Kudenov 1
Affiliation  

Combining hyperspectral and polarimetric imaging provides a powerful sensing modality with broad applications from astronomy to biology. Existing methods rely on temporal data acquisition or snapshot imaging of spatially separated detectors. These approaches incur fundamental artifacts that degrade imaging performance. To overcome these limitations, we present a stomatopod-inspired sensor capable of snapshot hyperspectral and polarization sensing in a single pixel. The design consists of stacking polarization-sensitive organic photovoltaics (P-OPVs) and polymer retarders. Multiple spectral and polarization channels are obtained by exploiting the P-OPVs’ anisotropic response and the retarders’ dispersion. We show that the design can sense 15 spectral channels over a 350-nanometer bandwidth. A detector is also experimentally demonstrated, which simultaneously registers four spectral channels and three polarization channels. The sensor showcases the myriad degrees of freedom offered by organic semiconductors that are not available in inorganics and heralds a fundamentally unexplored route for simultaneous spectral and polarimetric imaging.



中文翻译:


受螳螂虾启发的有机光电探测器,可同时进行高光谱和偏振成像



高光谱和偏振成像的结合提供了一种强大的传感模式,具有从天文学到生物学的广泛应用。现有方法依赖于时间数据采集或空间分离探测器的快照成像。这些方法会产生降低成像性能的基本伪影。为了克服这些限制,我们提出了一种受口足动物启发的传感器,能够在单个像素中进行快照高光谱和偏振传感。该设计由堆叠偏振敏感有机光伏 (P-OPV) 和聚合物延迟器组成。通过利用 P-OPV 的各向异性响应和延迟器的色散获得多个光谱和偏振通道。我们证明该设计可以在 350 纳米带宽上感测 15 个光谱通道。还通过实验演示了一个探测器,它同时记录四个光谱通道和三个偏振通道。该传感器展示了有机半导体提供的无数自由度,这是无机半导体所不具备的,并预示着一条从未探索过的同步光谱和偏振成像途径。

更新日期:2021-03-04
down
wechat
bug