当前位置: X-MOL 学术Journal of Theoretical and Applied Mechanics › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Impact of hydrogen and crosshead displacement rate on the martensitic transformations and mechanical properties of 304L stainless steel
Theoretical and Applied Fracture Mechanics ( IF 5.0 ) Pub Date : 2021-03-04 , DOI: 10.1016/j.tafmec.2021.102952
L. Claeys , I. De Graeve , T. Depover , K. Verbeken

In-situ tensile testing of electrochemically hydrogen charged 304L stainless steel at different crosshead displacement rates results in a largely different elongation at fracture compared to the corresponding test in air. At slow engineering strain rates (below 1E-2 s−1), large ductility losses are observed and the alloy suffers from clear hydrogen embrittlement (HE). The HE increases with decreasing strain rate due to the increased time that is given for hydrogen to diffuse and accumulate. However, at higher engineering strain rates (above 1E-2 s−1), the ductility increases with hydrogen charging. Due to intense martensitic transformations triggered by a combined temperature and hydrogen effect, the strain hardening of the alloy improves and necking is postponed. The temperature effect is restricted by reference testing in solution showing that HE still prevails. The enhanced martensitic transformations with hydrogen open opportunities for the creation of hydrogen resistant materials where the balance between HE and enhanced martensitic transformations can be optimized for the required application. Furthermore, tensile pre-straining results in an increased HE susceptibility due to the presence of stress concentrations and α’-martensite.



中文翻译:

氢和十字头位移速率对304L不锈钢马氏体相变和力学性能的影响

与在空气中进行的相应测试相比,在不同的十字头位移速率下对电化学充氢的304L不锈钢进行的原位拉伸测试导致断裂伸长率差异很大。在较低的工程应变速率下(低于1E-2 s -1),观察到较大的延展性损失,并且合金遭受明显的氢脆(HE)。由于增加了氢扩散和积累的时间,HE随应变率的降低而增加。但是,在较高的工程应变率下(高于1E-2 s -1),延展性随氢气的加入而增加。由于温度和氢的综合作用触发了强烈的马氏体相变,合金的应变硬化得到改善,缩颈被推迟。温度影响受到溶液中参考测试的限制,表明HE仍然占优势。具有氢的增强马氏体转变为创建耐氢材料提供了机会,其中可以针对所需应用优化HE和增强马氏体转变之间的平衡。此外,由于应力集中和α'马氏体的存在,拉伸预应变导致HE敏感性增加。

更新日期:2021-03-15
down
wechat
bug