当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Harnessing oxygen vacancy in V2O5 as high performing aqueous zinc-ion battery cathode
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-03-04 , DOI: 10.1016/j.jallcom.2021.159403
Zichen Qi , Ting Xiong , Tao Chen , Wen Shi , Mingchang Zhang , Zhi Wei Javier Ang , Huiqing Fan , Hong Xiao , Wee Siang Vincent Lee , Junmin Xue

Rechargeable aqueous zinc-ion batteries (ZIBs) have attracted considerable attention for large-scale energy storage systems due to their high energy density, low cost, and inherent safety. However, ZIBs suffer from limited cyclic stability with the use of the current cathode materials (such as V2O5) due to the strong electrostatic ion–lattice interactions with the diffusing divalent Zn2+, usually leading to a limited cyclic duration (<400 h). Herein, oxygen vacancies are introduced into V2O5 lattice to promote Zn2+ diffusion kinetic, thus enhancing the storage capacity and Zn2+ (de)intercalation processes, so as to high reversibility. In this work, the oxygen-deficient V2O5 displays improvements in electrochemical performances over the pristine V2O5. The as-assembled Zn//oxygen-deficient V2O5 battery shows an impressive stability of 90% capacity retention over 1000 cycles as compared to Zn//pristine V2O5 with 59% capacity retention over 680 cycles at a current density of 2 A g−1. It is also able to attain a high reversible specific capacity of approximately 406 mAh g−1 at 0.1 A g−1, which is 33% higher as compared to the capacity of pristine V2O5 (307 mAh g−1). More importantly, the Zn//oxygen-deficient V2O5 battery reaches an ultra-long cyclic duration of 620 h at 0.2 A g−1 without any significant capacity fading, which is, to the best of our knowledge, one of the best cyclic performance reported for V2O5 system. Thus, based on these encouraging results, harnessing oxygen vacancies in V2O5 may help to further enhance the electrochemical performance of the cathodes towards high performing ZIBs.



中文翻译:

利用V 2 O 5中的氧空位作为高性能的水性锌离子电池阴极

可再充电的水性锌离子电池(ZIBs)由于具有高能量密度,低成本和固有的安全性而在大型储能系统中引起了极大的关注。但是,由于与扩散的二价Zn 2+的强烈的离子离子-晶格相互作用,使用当前的阴极材料(例如V 2 O 5)使ZIB的循环稳定性受到限制,通常导致有限的循环持续时间(< 400小时)。在此,将氧空位引入V 2 O 5晶格中以促进Zn 2+扩散动力学,从而提高存储容量和Zn 2+(de)插层过程,以实现高可逆性。在这项工作中,缺氧的V 2 O 5在电化学性能方面比原始的V 2 O 5有所提高。组装后的Zn //缺氧V 2 O 5电池显示出令人印象深刻的稳定性,在电流密度下,在680次循环中90%的容量保持率比在680次循环中Zn //原始V 2 O 5在680次循环中的容量保持率高。 2 A g -1。它还能够在0.1 A g -1时获得约406 mAh g -1的高可逆比容量与原始V 2 O 5(307 mAh g -1)的容量相比,高出33%。更重要的是,Zn //缺氧的V 2 O 5电池在0.2 A g -1下达到620 h的超长循环持续时间,而没有明显的容量衰减,据我们所知,这是其中之一。 V 2 O 5系统报告的最佳循环性能。因此,基于这些令人鼓舞的结果,利用V 2 O 5中的氧空位可能有助于进一步增强阴极对高性能ZIB的电化学性能。

更新日期:2021-03-11
down
wechat
bug