当前位置: X-MOL 学术J. Fourier Anal. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Generalized Notions of Sparsity and Restricted Isometry Property. Part II: Applications
Journal of Fourier Analysis and Applications ( IF 1.2 ) Pub Date : 2021-03-03 , DOI: 10.1007/s00041-020-09809-8
Marius Junge , Kiryung Lee

Restricted isometry property (RIP) provides a near isometric map for sparse signals. RIP of structured random matrices has played a key role for dimensionality reduction and recovery from compressive measurements. In a companion paper, we have developed a unified theory for RIP of group structured measurement operators on generalized sparsity models. The implication of the extended result will be further discussed in this paper in terms of its pros and cons over the conventional theory. We first show that the extended RIP theory enables the optimization of sample complexity over various relaxations of the canonical sparsity model. Meanwhile, the generalized sparsity model is no longer described as a union of subspaces. Thus the sparsity level is not sub-additive. This incurs that RIP of double the sparsity level does not imply RIP on the Minkowski difference of the sparsity model with itself, which is crucial for dimensionality reduction. We show that a group structured measurement operator provides an RIP-like property with additive distortion for non-sub-additive models. This weaker result can be useful for applications like locality-sensitive hashing. Moreover, we also present that the group structured measurements with random sign enables near isometric sketching on any set similar to the Gaussian measurements. Lastly, an extension of theory to infinite dimension is derived and illustrated over selected examples given by Lebesgue measure of support and Sobolev seminorms.



中文翻译:

稀疏性和受限制的等距特性的广义概念。第二部分:应用

受限等距特性(RIP)为稀疏信号提供了近等距图。结构化随机矩阵的RIP在降维和从压缩测量中恢复方面起着关键作用。在随附的论文中,我们为广义稀疏模型上的组结构度量运算符的RIP开发了统一的理论。扩展结果的含义将在本文中相对于传统理论的优缺点进行进一步讨论。我们首先表明,扩展的RIP理论能够在规范稀疏模型的各种松弛条件下优化样本复杂度。同时,广义稀疏模型不再被描述为子空间的并集。因此,稀疏度级别不是次加性的。这导致稀疏度水平提高一倍的RIP并不意味着RIP意味着稀疏度模型与其自身的Minkowski差异,这对于降维至关重要。我们显示了一个组结构的度量运算符,它为非子可加模型提供了类似RIP的属性,并具有可加的失真。这个较弱的结果对于诸如位置敏感哈希之类的应用程序可能很有用。此外,我们还提出,具有随机符号的组结构化测量可以在类似于高斯测量的任何集合上进行近等轴测草图。最后,从Lebesgue支持度量和Sobolev半范数给出的示例中,推导并扩展了理论到无穷大的扩展。我们显示了一个组结构的度量运算符,它为非子可加模型提供了类似RIP的属性,并具有可加的失真。这个较弱的结果对于诸如位置敏感哈希之类的应用程序可能很有用。此外,我们还提出,具有随机符号的组结构化测量值可以在类似于高斯测量值的任何集合上进行近等轴测草图。最后,从Lebesgue支持度量和Sobolev半范数给出的示例中,推导并扩展了理论到无穷大的扩展。我们显示了一个组结构的度量运算符,它为非子可加模型提供了类似RIP的属性,并具有可加的失真。这个较弱的结果对于诸如位置敏感哈希之类的应用程序可能很有用。此外,我们还提出,具有随机符号的组结构化测量值可以在类似于高斯测量值的任何集合上进行近等轴测草图。最后,从Lebesgue支持度量和Sobolev半范数给出的示例中,推导并扩展了理论到无穷大的扩展。我们还提出,具有随机符号的组结构化度量可以在类似于高斯度量的任何集合上进行近等距的草图绘制。最后,从Lebesgue支持度量和Sobolev半范数给出的示例中,推导并扩展了理论到无穷大的扩展。我们还提出,具有随机符号的组结构化度量可以在类似于高斯度量的任何集合上进行近等距的草图绘制。最后,从Lebesgue支持度量和Sobolev半范数给出的示例中,推导并扩展了理论到无穷大的扩展。

更新日期:2021-03-04
down
wechat
bug