当前位置: X-MOL 学术Comput. Geotech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Mass-gravity-scaling technique to enhance computational efficiency of explicit numerical methods for quasi-static problems
Computers and Geotechnics ( IF 5.3 ) Pub Date : 2021-03-03 , DOI: 10.1016/j.compgeo.2021.103999
E.Y. Kencana , I.S. Haryono , C.F. Leung , Y.K. Chow

Large deformation numerical analysis adopting explicit integration scheme is commonly employed in geotechnical analysis to simulate quasi-static problems involving large soil deformations. The computational time for the conduct of such analysis is often very time consuming particularly for complex 3-dimensional soil-structure interaction problems. As an extension to the mass-scaling technique, a mass-gravity-scaling (MGS) technique is proposed in this study to improve the computational efficiency substantially. By scaling the material density and model gravity correspondingly, the soil initial stress state that is essential for realistic soil response can be maintained. This enables the increase in the critical time step resulting in a significant reduction in computational time. Three quasi-static large soil deformation geotechnical problems involving T-bar penetration, spudcan-pile interaction, and pile-reinforced slope are presented to illustrate the application of the MGS technique simulated in finite element (Coupled Eulerian-Lagrangian and Updated Lagrangian) and finite difference methods. It is established that an appropriate scaling factor should be chosen by considering a trade-off between computational time and accuracy of analysis. For selected problems, a hybrid-MGS technique can be employed by selectively applying different scaling factors over specific domains to improve the accuracy and efficiency of the solution technique.



中文翻译:

质量重力缩放技术可提高准静态问题显式数值方法的计算效率

在岩土分析中通常采用采用显式积分方案的大变形数值分析来模拟涉及大土壤变形的准静态问题。进行此类分析的计算时间通常非常耗时,尤其是对于复杂的三维土壤-结构相互作用问题。作为质量缩放技术的扩展,本研究提出了一种质量重力缩放(MGS)技术,以显着提高计算效率。通过相应地缩放材料密度和模型重力,可以保持对于真实土壤响应至关重要的土壤初始应力状态。这样可以增加关键时间步长,从而显着减少计算时间。提出了三个涉及T杆渗透,桩桩-桩相互作用和桩加固边坡的准静态大土体变形岩土工程问题,以说明MGS技术在有限元(耦合的Eulerian-Lagrangian和更新的Lagrangian)和有限元中的应用。差异方法。已经确定应该通过考虑计算时间和分析准确性之间的权衡来选择适当的缩放因子。对于选定的问题,可以通过在特定域上选择性地应用不同的比例因子来采用混合式MGS技术,以提高解决方案技术的准确性和效率。提出了桩和加筋的边坡,以说明MGS技术在有限元法(耦合的Eulerian-Lagrangian和更新的Lagrangian)和有限差分法中的应用。已经确定应通过考虑计算时间与分析准确性之间的权衡来选择适当的比例因子。对于选定的问题,可以通过在特定域上选择性地应用不同的比例因子来采用混合式MGS技术,以提高解决方案技术的准确性和效率。提出了桩和加筋的边坡,以说明MGS技术在有限元法(耦合的Eulerian-Lagrangian和更新的Lagrangian)和有限差分法中的应用。已经确定应该通过考虑计算时间和分析准确性之间的权衡来选择适当的缩放因子。对于选定的问题,可以通过在特定域上选择性地应用不同的比例因子来采用混合式MGS技术,以提高解决方案技术的准确性和效率。

更新日期:2021-03-03
down
wechat
bug