当前位置: X-MOL 学术Ocean Model. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Parameterization of oscillating boundary layers in lakes and coastal oceans
Ocean Modelling ( IF 3.1 ) Pub Date : 2021-03-02 , DOI: 10.1016/j.ocemod.2021.101780
Aidin Jabbari , Leon Boegman

Oscillating turbulent bottom boundary layers (BBLs) occur in lakes and coastal oceans. At the mesoscale level, their kinematics are usually characterized by assuming either laminar or steady turbulent flow, and applying analytical solutions or semi-empirical correlations; e.g. log-law, Stokes’ second problem, inertial dissipation method (IDM), Batchelor fitting to temperature microstructure method (TMM). To investigate the ability of these models to capture oscillating turbulent BBLs, we have performed large eddy simulations (LES) and direct numerical simulations (DNS) for Reynolds numbers (Reδs; based on the Stokes layer thickness) between 20 and 3600. The velocity profiles showed logarithmic behavior throughout the cycle, in fully turbulent flows (error less than 2% for Reδs>3000), but the log-law was only accurate during turbulent bursts in the later stage of the acceleration phase for Reδs<550. Stokes’ second problem predicted the velocity profile in laminar or disturbed laminar flow (errors less than 10% for Reδs<500). At high Reynolds number (Reδs=3600), LES shows that the dissipation of turbulent kinetic energy from the IDM is more accurate than that from the log-law, particularly during changes in flow direction. The difference between the dissipation estimated from field observations (using IDM and TMM) and from idealized LES, however, suggest that measurement errors may predominate over uncertainties in simulation of boundary conditions and methodological errors in field applications.



中文翻译:

湖泊和沿海海洋中振荡边界层的参数化

振荡湍流的底部边界层(BBL)发生在湖泊和沿海海洋中。在中尺度水平上,它们的运动学通常以假定为层流或稳定湍流,并应用解析解或半经验相关性为特征。例如对数定律,斯托克斯的第二个问题,惯性耗散法(IDM),巴彻勒拟合温度微结构法(TMM)。为了研究这些模型捕获振荡湍流BBL的能力,我们对雷诺数执行了大涡模拟(LES)和直接数值模拟(DNS)([RËδs; 基于Stokes层的厚度)在20到3600之间。速度曲线显示了整个循环中的对数行为,处于完全湍流(误差小于2%[RËδs> 3000),但对数律仅在加速阶段后期的湍流爆发期间才是准确的 [RËδs<550。斯托克斯的第二个问题预测了层流或扰动层流中的速度分布(误差小于10%[RËδs<500)。雷诺数高([RËδs=3600LES)表明,IDM的湍动能耗散比对数律更精确,特别是在流向变化时。然而,根据实地观测(使用IDM和TMM)和理想化的LES估算的耗散之间的差异表明,在边界条件模拟和实地应用中的方法学误差中,测量误差可能会超过不确定性。

更新日期:2021-03-16
down
wechat
bug