当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Metal chalcogenides-based materials for high-performance metal ion capacitors
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-03-02 , DOI: 10.1016/j.jallcom.2021.159352
Dan Zhang , Le Li , Yuanzheng Zhang

Metal ion capacitors (MICs) are a new type of hybrid electrochemical energy storage (EES) device, comprising of a battery-type electrode and supercapacitor-type electrode, and with integrated the advantages of batteries and supercapacitors (high energy density, high power density, and long lifespan), making it an advanced energy storage device with commercial application prospects. However, the practical application of MICs is still limited due to the unbalance of kinetics and capacity between the electrodes, the slow ion/electron diffusion rate, and the poor structural stability of the electrodes. Recently, metal chalcogenides-base materials with distinct structure and fascinating characters have gained a great deal of attentions for applications in MICs, with outstanding improvement from charge storage capacity to reaction kinetics. In this article, we review recent research progress of metal chalcogenides-based materials in MICs. First, the energy storage principle and development requirements of MICs are introduced. Then, the critical advantages and vital functions of metal chalcogenides-base materials in the fabrication of MICs are discussed in detail. Finally, the challenges and prospects of the application of metal chalcogenides-based materials in high-performance MICs capacitors are presented.



中文翻译:

高性能金属离子电容器的金属硫属化物基材料

金属离子电容器(MIC)是一种新型的混合电化学储能(EES)装置,由电池型电极和超级电容器型电极组成,并且具有电池和超级电容器的优势(高能量密度,高功率密度) ,使用寿命长),使其成为具有商业应用前景的高级储能设备。然而,由于电极之间的动力学和容量的不平衡,缓慢的离子/电子扩散速率以及电极的差的结构稳定性,MIC的实际应用仍然受到限制。近年来,具有独特结构和引人入胜特征的金属硫族化物基材料在MIC中得到了广泛的关注,从电荷存储能力到反应动力学的显着提高。在这篇文章中,我们回顾了金属硫族化物基材料在MIC中的最新研究进展。首先,介绍了中微芯片的储能原理和发展要求。然后,详细讨论了金属硫族化物基材料在制备MIC方面的关键优势和重要功能。最后,提出了基于金属硫族化物的材料在高性能MIC电容器中的挑战和前景。

更新日期:2021-03-07
down
wechat
bug