当前位置: X-MOL 学术Fluid Phase Equilibr. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
ePC-SAFT advanced – Part II: Application to Salt Solubility in Ionic and Organic Solvents and the Impact of Ion Pairing
Fluid Phase Equilibria ( IF 2.8 ) Pub Date : 2021-03-02 , DOI: 10.1016/j.fluid.2021.112989
Mark Bülow , Moreno Ascani , Christoph Held

The applications of electrolyte thermodynamic models to non-aqueous systems is of great value to reduce experimental effort and gain inside into molecular interactions. A large-scale application is for example the design of advanced battery electrolytes. For non-aqueous electrolyte systems, the Born term was found to be important, as it accounts for the transfer of ions from water into non-aqueous medium. In part one of this study [Bülow et al., Fluid Phase Equilibria 2021, 112967] the Born term was combined with a concentration-dependent dielectric constant within the ePC-SAFT framework (electrolyte Perturbed-Chain Statistical Associating Fluid Theory). In the present work, the Bjerrum treatment for ion pairing was included in the Debye-Hückel framework within ePC-SAFT. The approach was validated by experimental data for the dissociation of salts in organic solvents derived from conductivity measurements. Further, solubility was modeled of alkali halides in organic solvents and in ionic liquids. Modeling solubility required access to the solubility product KSP, which does not depend on the solvent. The approach within this work was to first determine KSP using experimental solubility data in water and the respective ePC-SAFT predicted activity coefficients prior to predict activity coefficients in non-aqueous medium, finally yielding solubility. The so-determined solubility values were found to be in reasonable agreement with the experimental data without fitting model parameters to any data of the non-aqueous solutions. The solubility product requires the solid form of the precipitating salt to be equal for all solvents; as alkali salts precipitate from aqueous solutions as hydrates, the method cannot be applied. Therefore, a methodology is presented to extrapolate the high-temperature KSP of anhydrates to lower temperature. Using the so-extrapolated KSP allowed predicting solubility of non-solvates in other solvents.



中文翻译:

先进的ePC-SAFT –第二部分:在离子和有机溶剂中的盐溶性应用以及离子对的影响

电解质热力学模型在非水体系中的应用对于减少实验工作和深入了解分子间的相互作用具有重要的价值。大规模应用例如是高级电池电解质的设计。对于非水电解质系统,发现Born术语很重要,因为它说明了离子从水到非水介质的转移。在这项研究的第一部分[Bülow等,流体相平衡2021,112967]中,玻恩项与ePC-SAFT框架(电解质扰动链统计缔合流体理论)中与浓度相关的介电常数相结合。在当前的工作中,ePC-SAFT的Debye-Hückel框架中包含了Bjerrum离子对的处理方法。通过电导率测量得出的有机溶剂中盐的离解实验数据验证了该方法。此外,模拟了碱金属卤化物在有机溶剂和离子液体中的溶解度。对溶解度进行建模需要获得溶解度乘积ķ小号P,这不取决于溶剂。这项工作的方法是首先确定ķ小号P使用在水中的实验溶解度数据和相应的ePC-SAFT预测的活度系数,然后再预测在非水介质中的活度系数,最终得出溶解度。发现所确定的溶解度值与实验数据合理地吻合,而模型参数不适合非水溶液的任何数据。溶解度积要求沉淀盐的固体形式对于所有溶剂均相等;由于碱金属盐从水溶液中以水合物形式沉淀出来,因此该方法无法应用。因此,提出了一种推断高温的方法ķ小号P无水物降低温度。使用外推法ķ小号P 允许预测非溶剂在其他溶剂中的溶解度。

更新日期:2021-03-12
down
wechat
bug