当前位置: X-MOL 学术Am. Mineral. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Competitive adsorption geometries for the arsenate As(V) and phosphate P(V) oxyanions on magnetite surfaces: Experiments and theory
American Mineralogist ( IF 2.7 ) Pub Date : 2021-03-01 , DOI: 10.2138/am-2020-7350
Xiaoliang Liang 1, 2, 3 , Xiaoju Lin 1, 2, 3 , Gaoling Wei 4, 5 , Lingya Ma 1, 2, 3 , Hongping He 1, 2, 3 , David Santos-Carballal 6 , Jianxi Zhu 1, 2, 3 , Runliang Zhu 1, 2, 3 , Nora H. De Leeuw 6, 7
Affiliation  

In the present study, the competitive adsorption geometries for arsenate and phosphate on magnetite surfaces over a pH range of 4–9 were investigated using in situ attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) and two-dimensional correlation analysis (2D-COS). The adsorption energies and infrared vibrational frequencies of these surface complexes were also calculated by first-principles simulations. Arsenate and phosphate have different preferences for the magnetite surface in the presence of aqueous solvent at both acid and alkaline pH. For the adsorption of phosphate, mono-protonated monodentate mononuclear (MMM) complexes dominated at acid pH, while non-protonated bidentate binuclear (NBB) complexes were dominant at alkaline pH. Arsenate mainly formed bidentate binuclear (BB) complexes with some outer-sphere species, both of which were more prevalent at acid pH. The pre-absorbed inner-sphere arsenate species were scarcely affected by the introduction of phosphate. However, the pre-absorbed phosphate oxyanions, especially the MMM complexes, were significantly substituted by BB arsenate at the magnetite surfaces. The adsorption affinity of phosphate and arsenate species for magnetite surface was found to increase in the following order: MMM phosphate complex < NBB phosphate complex < BB arsenate complex, which was consistent with the calculated adsorption energies. The simulated infrared vibrational frequencies for the most favorable adsorption modes of each oxyanion display distinctive patterns, and their trends are in excellent agreement with experimental data.The effects of pH, adsorption sequence, and mineral species on the competitive adsorption between arsenate and phosphate oxyanions are also discussed, and their different competing ability and stability on the magnetite surfaces can be ascribed to the variations in adsorption geometry and strength of binding. To the best of our knowledge, this is the first study aiming to distinguish the stability of the different phosphate and arsenate complexes on magnetite by employing a combined approach of in situ spectroscopy and DFT simulations. Our results provide molecular-level insight into the geometries and relative stabilities of the adsorption of phosphate and arsenate on magnetite surfaces, which is useful for interpretation of the mobility and bioavailability of these anions.

中文翻译:

磁铁矿表面上砷酸砷(V)和磷酸根P(V)氧阴离子的竞争性吸附几何:实验和理论

在本研究中,使用原位衰减全反射傅里叶变换红外光谱(ATR-FTIR)和二维相关分析(2D),研究了pH在4–9范围内磁铁矿表面上砷酸盐和磷酸盐的竞争性吸附几何结构。 -COS)。这些表面配合物的吸附能和红外振动频率也通过第一性原理模拟计算得出。在酸性和碱性pH值下都存在水性溶剂的情况下,砷酸盐和磷酸盐对磁铁矿表面的偏好不同。对于磷酸盐的吸附,单质子化单齿单核(MMM)配合物在酸性pH值下占主导,而非质子化双齿双核(NBB)配合物在碱性pH值下占优势。砷酸盐主要与双外层物种形成双齿双核(BB)络合物,两者在酸性pH值下更普遍。磷酸盐的引入几乎不会影响预先吸收的内球砷酸盐物种。但是,预吸收的磷酸根氧阴离子,特别是MMM配合物,在磁铁矿表面被BB砷酸盐显着取代。发现磷酸盐和砷酸盐物质对磁铁矿表面的吸附亲和力按以下顺序增加:MMM磷酸盐络合物<NBB磷酸盐络合物<BB砷酸盐络合物,这与计算的吸附能一致。每个氧阴离子最有利的吸附模式的模拟红外振动频率显示出独特的模式,并且它们的趋势与实验数据非常吻合。还讨论了pH,吸附顺序和矿物种类对砷酸根和磷酸根氧阴离子之间竞争性吸附的影响,并且它们在磁铁矿表面上的不同竞争能力和稳定性可归因于吸附几何形状和结合强度的变化。据我们所知,这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的结果提供了分子水平的洞察力,可了解磁铁矿表面磷酸盐和砷酸盐的吸附几何形状和相对稳定性,这可用于解释这些阴离子的迁移率和生物利用度。还讨论了砷酸根和磷酸根氧阴离子之间竞争性吸附的矿物种类,它们在磁铁矿表面的不同竞争能力和稳定性可归因于吸附几何形状和结合强度的变化。据我们所知,这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的研究结果为磁铁矿表面磷酸盐和砷酸盐的吸附的几何形状和相对稳定性提供了分子水平的见解,可用于解释这些阴离子的迁移率和生物利用度。还讨论了砷酸根和磷酸根氧阴离子之间竞争性吸附的矿物种类,它们在磁铁矿表面的不同竞争能力和稳定性可归因于吸附几何形状和结合强度的变化。据我们所知,这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的研究结果为磁铁矿表面磷酸盐和砷酸盐的吸附的几何形状和相对稳定性提供了分子水平的见解,可用于解释这些阴离子的迁移率和生物利用度。它们在磁铁矿表面上的不同竞争能力和稳定性可以归因于吸附几何形状和结合强度的变化。据我们所知,这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的结果提供了分子水平的洞察力,可了解磁铁矿表面磷酸盐和砷酸盐的吸附几何形状和相对稳定性,这可用于解释这些阴离子的迁移率和生物利用度。它们在磁铁矿表面上的不同竞争能力和稳定性可以归因于吸附几何形状和结合强度的变化。据我们所知,这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的研究结果为磁铁矿表面磷酸盐和砷酸盐的吸附的几何形状和相对稳定性提供了分子水平的见解,可用于解释这些阴离子的迁移率和生物利用度。这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的研究结果为磁铁矿表面磷酸盐和砷酸盐的吸附的几何形状和相对稳定性提供了分子水平的见解,可用于解释这些阴离子的迁移率和生物利用度。这是第一个旨在通过结合使用原位光谱法和DFT模拟方法来区分磁铁矿上不同磷酸盐和砷酸盐络合物的稳定性的研究。我们的研究结果为磁铁矿表面磷酸盐和砷酸盐的吸附的几何形状和相对稳定性提供了分子水平的见解,可用于解释这些阴离子的迁移率和生物利用度。
更新日期:2021-03-01
down
wechat
bug