当前位置: X-MOL 学术Prog. Mater. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Damage tolerant design of additively manufactured metallic components subjected to cyclic loading: State of the art and challenges
Progress in Materials Science ( IF 33.6 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.pmatsci.2021.100786
Uwe Zerbst 1 , Giovanni Bruno 1 , Jean-Yves Buffiere 2 , Thomas Wegener 3 , Thomas Niendorf 3 , Tao Wu 3 , Xiang Zhang 4 , Nikolai Kashaev 5 , Giovanni Meneghetti 6 , Nik Hrabe 7 , Mauro Madia 1 , Tiago Werner 1 , Kai Hilgenberg 1 , Martina Koukolíková 8 , Radek Procházka 8 , Jan Džugan 8 , Benjamin Möller 9 , Stefano Beretta 10 , Alexander Evans 1 , Rainer Wagener 9 , Kai Schnabel 9
Affiliation  

Undoubtedly, a better understanding and the further development of approaches for damage tolerant component design of AM parts are among the most significant challenges currently facing the use of these new technologies.

This article presents a thorough overview of the discussion at an international workshop on the topic. It aims to provide a review of the parameters affecting the damage tolerance of parts produced by additive manufacturing (shortly, AM parts) with special emphasis on the process parameters intrinsic to the AM technologies, the resulting defects and the residual stresses. Based on these aspects, basic concepts are reviewed and critically discussed specifically for AM materials:

-

Criteria for damage tolerant component design;

-

Criteria for the determination of fatigue and fracture properties;

-

Strategies for the determination of the fatigue life in dependence of different manufacturing conditions;

-

Methods for the quantitative characterization of microstructure and defects;

-

Methods for the determination of residual stresses;

-

Effect of the defects and the residual stresses on the fatigue life and behaviour.

We see that many of the classic concepts need to be expanded in order to fit with the particular microstructure (grain size and shape, crystal texture) and defect distribution (spatial arrangement, size, shape, amount) present in AM (in particular laser powder bed fusion). For instance, 3D characterization of defects becomes essential, since the defect shapes in AM are diverse and impact the fatigue life in a different way than in the case of conventionally produced components. Such new concepts have immediate consequence on the way one should tackle the determination of the fatigue life of AM parts; for instance, since a classification of defects and a quantification of the tolerable shapes and sizes is still missing, a new strategy must be defined, whereby theoretical calculations (e.g. finite element modeling) allow determining the maximum tolerable defect size, and non-destructive testing (NDT) techniques are required to detect whether such defects are indeed present in the component. Such examples show how component design, damage and failure criteria, and characterization (and/or NDT) become for AM parts fully interlinked. We conclude that the homogenization of these fields represents the current challenge for the engineer and the materials scientist.



中文翻译:


承受循环载荷的增材制造金属部件的损伤容限设计:最新技术和挑战



毫无疑问,更好地理解和进一步开发增材制造零件的耐损伤组件设计方法是目前使用这些新技术面临的最重大挑战之一。


本文全面概述了国际研讨会上有关该主题的讨论。它旨在回顾影响增材制造零件(简称增材制造零件)损伤容限的参数,特别强调增材制造技术固有的工艺参数、由此产生的缺陷和残余应力。基于这些方面,专门针对增材制造材料的基本概念进行了回顾和批判性讨论:

-


容损部件设计标准;

-


疲劳和断裂性能的测定标准;

-


根据不同制造条件确定疲劳寿命的策略;

-


微观结构和缺陷的定量表征方法;

-


残余应力的测定方法;

-


缺陷和残余应力对疲劳寿命和行为的影响。


我们看到,许多经典概念需要扩展,以适应增材制造(特别是激光粉末)中存在的特定微观结构(晶粒尺寸和形状、晶体结构)和缺陷分布(空间排列、尺寸、形状、数量)床融合)。例如,缺陷的 3D 表征变得至关重要,因为增材制造中的缺陷形状多种多样,并且以与传统生产的部件不同的方式影响疲劳寿命。这些新概念对确定增材制造零件疲劳寿命的方式产生了直接影响;例如,由于仍然缺少缺陷的分类以及可容忍形状和尺寸的量化,因此必须定义新的策略,通过理论计算(例如有限元建模)可以确定最大可容忍缺陷尺寸和无损检测需要无损检测(NDT)技术来检测组件中是否确实存在此类缺陷。这些例子展示了增材制造零件的组件设计、损坏和故障标准以及表征(和/或无损检测)如何完全相互关联。我们的结论是,这些领域的均质化代表了工程师和材料科学家当前面临的挑战。

更新日期:2021-03-01
down
wechat
bug