当前位置: X-MOL 学术J. Alloys Compd. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Controlled nanostructuring via aluminum doping in CuO nanosheets for enhanced thermoelectric performance
Journal of Alloys and Compounds ( IF 5.8 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.jallcom.2021.159370
Neazar Baghdadi , Abdu Saeed , Akhalakur Rahman Ansari , Ahmed H. Hammad , Ahmed Afify , Numan Salah

Copper oxide (CuO) nanosheets (NS) produced by the microwave chemical assisted route were reported to have attractive structural and thermoelectric (TE) properties. They possess the non-agglomeration property and have two-dimensional (2D) ultra-thin NS with a high Seebeck coefficient and relatively elevated electrical conductivity. This study controlled nanostructuring of CuO NS via aluminum (Al) doping has been investigated for its effect on this material's structural and TE performance. Various concentrations of aluminum (Al) in the range 0.5–5 mol% were incorporated in the host of CuO NS. Increasing the concentration of this dopant was observed to systematically reduce the size of the NS with no effect on their crystallinity. Moreover, the Seebeck coefficient of the Al-doped CuO NS was increased, while the electrical conductivity kept almost invariant. In sharp contracts, the thermal conductivity was significantly decreased, which results in an enhanced TE figure of merit, zT. The zT value was increased from around 0.004 for the pure CuO NS to approximately 0.09 for the 5 mol% Al-doped sample at room temperature. This broad difference was reduced by heating to 673 K, where the zT values for pure and 5 mol% Al-doped CuO NS recorded 0.2 and 0.9, respectively. The TE generated powers of designed modules from pure CuO NS and Al-doped CuO NS (5 mol%) were measured. The TE generated power from the Al-doped CuO NS (5 mol%) was 7 μW at 673 K, which is 5 times higher than that of the pure CuO NS sample. These results showed that the Al-doped CuO NS could be a promising TE nanomaterial.



中文翻译:

通过在CuO纳米片中掺杂铝来控制纳米结构以增强热电性能

据报道,通过微波化学辅助路线生产的氧化铜(CuO)纳米片(NS)具有有吸引力的结构和热电(TE)性能。它们具有非凝聚性,并具有二维(2D)超薄NS,具有较高的塞贝克系数和相对较高的电导率。这项研究通过铝(Al)掺杂控制了CuO NS的纳米结构,研究了其对这种材料的结构和TE性能的影响。CuO NS的主体中掺入了0.5-5 mol%范围内的各种浓度的铝(Al)。观察到增加该掺杂剂的浓度可系统地减小NS的尺寸,而对它们的结晶度没有影响。此外,Al掺杂的CuO NS的塞贝克系数增加,而电导率几乎保持不变。在急剧的收缩中,热导率显着降低,这导致TE品质因数zT增强。在室温下,zT值从纯CuO NS的约0.004增至5摩尔%Al掺杂样品的约0.09。通过加热至673 K可以减小这种广泛的差异,其中纯Al和5 mol%的Al掺杂CuO NS的zT值分别记录为0.2和0.9。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。掺Al的CuO NS(5 mol%)产生的TE在673 K下的功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。导热系数显着降低,这导致TE品质因数zT增强。在室温下,zT值从纯CuO NS的约0.004增至5摩尔%Al掺杂样品的约0.09。通过加热至673 K可以减小这种广泛的差异,其中纯Al和5 mol%的Al掺杂CuO NS的zT值分别记录为0.2和0.9。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。导热系数显着降低,这导致TE品质因数zT增强。在室温下,zT值从纯CuO NS的约0.004增至5摩尔%Al掺杂样品的约0.09。通过加热至673 K可以减小这种广泛的差异,其中纯Al和5 mol%的Al掺杂CuO NS的zT值分别记录为0.2和0.9。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。对于纯CuO NS,室温下为004,对于5摩尔%Al掺杂的样品为约0.09。通过加热至673 K可以减小这种广泛的差异,其中纯Al和5 mol%的Al掺杂CuO NS的zT值分别记录为0.2和0.9。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。对于纯CuO NS,室温下为004,对于5摩尔%Al掺杂的样品为约0.09。通过加热至673 K可以减小这种广泛的差异,其中纯Al和5 mol%的Al掺杂CuO NS的zT值分别记录为0.2和0.9。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。测量了由纯CuO NS和Al掺杂的CuO NS(5 mol%)设计的模块的TE产生功率。Al掺杂的CuO NS(5 mol%)在673 K下的TE产生功率为7μW,是纯CuO NS样品的5倍。这些结果表明,Al掺杂的CuO NS可能是有前途的TE纳米材料。

更新日期:2021-03-07
down
wechat
bug